Spectral Invariance of Pseudodifferential Boundary Value Problems on Manifolds with Conical Singularities

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Pedro T.P. Lopes
  • Elmar Schrohe

Organisationseinheiten

Externe Organisationen

  • Universidade de Sao Paulo
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)1147-1202
Seitenumfang56
FachzeitschriftJournal of Fourier Analysis and Applications
Jahrgang25
Ausgabenummer3
Frühes Online-Datum12 März 2018
PublikationsstatusVeröffentlicht - 15 Juni 2019

Abstract

We prove the spectral invariance of the algebra of classical pseudodifferential boundary value problems on manifolds with conical singularities in the Lp-setting. As a consequence we also obtain the spectral invariance of the classical Boutet de Monvel algebra of zero order operators with parameters. In order to establish these results, we show the equivalence of Fredholm property and ellipticity for both cases.

ASJC Scopus Sachgebiete

Zitieren

Spectral Invariance of Pseudodifferential Boundary Value Problems on Manifolds with Conical Singularities. / Lopes, Pedro T.P.; Schrohe, Elmar.
in: Journal of Fourier Analysis and Applications, Jahrgang 25, Nr. 3, 15.06.2019, S. 1147-1202.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Lopes PTP, Schrohe E. Spectral Invariance of Pseudodifferential Boundary Value Problems on Manifolds with Conical Singularities. Journal of Fourier Analysis and Applications. 2019 Jun 15;25(3):1147-1202. Epub 2018 Mär 12. doi: 10.48550/arXiv.1709.06817, 10.1007/s00041-018-9607-5
Download
@article{156d972e3c7944cd8224827d7e819992,
title = "Spectral Invariance of Pseudodifferential Boundary Value Problems on Manifolds with Conical Singularities",
abstract = "We prove the spectral invariance of the algebra of classical pseudodifferential boundary value problems on manifolds with conical singularities in the Lp-setting. As a consequence we also obtain the spectral invariance of the classical Boutet de Monvel algebra of zero order operators with parameters. In order to establish these results, we show the equivalence of Fredholm property and ellipticity for both cases.",
keywords = "Boundary value problems, Manifolds with conical singularities, Pseudodifferential analysis, Spectral invariance",
author = "Lopes, {Pedro T.P.} and Elmar Schrohe",
note = "Funding Information: Pedro T. P. Lopes was partially supported by FAPESP (Processo N{\'u}mero 2016/07016-8). Publisher Copyright: {\textcopyright} 2018, Springer Science+Business Media, LLC, part of Springer Nature. Copyright: Copyright 2019 Elsevier B.V., All rights reserved.",
year = "2019",
month = jun,
day = "15",
doi = "10.48550/arXiv.1709.06817",
language = "English",
volume = "25",
pages = "1147--1202",
journal = "Journal of Fourier Analysis and Applications",
issn = "1069-5869",
publisher = "Birkhauser Boston",
number = "3",

}

Download

TY - JOUR

T1 - Spectral Invariance of Pseudodifferential Boundary Value Problems on Manifolds with Conical Singularities

AU - Lopes, Pedro T.P.

AU - Schrohe, Elmar

N1 - Funding Information: Pedro T. P. Lopes was partially supported by FAPESP (Processo Número 2016/07016-8). Publisher Copyright: © 2018, Springer Science+Business Media, LLC, part of Springer Nature. Copyright: Copyright 2019 Elsevier B.V., All rights reserved.

PY - 2019/6/15

Y1 - 2019/6/15

N2 - We prove the spectral invariance of the algebra of classical pseudodifferential boundary value problems on manifolds with conical singularities in the Lp-setting. As a consequence we also obtain the spectral invariance of the classical Boutet de Monvel algebra of zero order operators with parameters. In order to establish these results, we show the equivalence of Fredholm property and ellipticity for both cases.

AB - We prove the spectral invariance of the algebra of classical pseudodifferential boundary value problems on manifolds with conical singularities in the Lp-setting. As a consequence we also obtain the spectral invariance of the classical Boutet de Monvel algebra of zero order operators with parameters. In order to establish these results, we show the equivalence of Fredholm property and ellipticity for both cases.

KW - Boundary value problems

KW - Manifolds with conical singularities

KW - Pseudodifferential analysis

KW - Spectral invariance

UR - http://www.scopus.com/inward/record.url?scp=85043456774&partnerID=8YFLogxK

U2 - 10.48550/arXiv.1709.06817

DO - 10.48550/arXiv.1709.06817

M3 - Article

AN - SCOPUS:85043456774

VL - 25

SP - 1147

EP - 1202

JO - Journal of Fourier Analysis and Applications

JF - Journal of Fourier Analysis and Applications

SN - 1069-5869

IS - 3

ER -