Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 1147-1202 |
Seitenumfang | 56 |
Fachzeitschrift | Journal of Fourier Analysis and Applications |
Jahrgang | 25 |
Ausgabenummer | 3 |
Frühes Online-Datum | 12 März 2018 |
Publikationsstatus | Veröffentlicht - 15 Juni 2019 |
Abstract
We prove the spectral invariance of the algebra of classical pseudodifferential boundary value problems on manifolds with conical singularities in the Lp-setting. As a consequence we also obtain the spectral invariance of the classical Boutet de Monvel algebra of zero order operators with parameters. In order to establish these results, we show the equivalence of Fredholm property and ellipticity for both cases.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Analysis
- Mathematik (insg.)
- Allgemeine Mathematik
- Mathematik (insg.)
- Angewandte Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Journal of Fourier Analysis and Applications, Jahrgang 25, Nr. 3, 15.06.2019, S. 1147-1202.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Spectral Invariance of Pseudodifferential Boundary Value Problems on Manifolds with Conical Singularities
AU - Lopes, Pedro T.P.
AU - Schrohe, Elmar
N1 - Funding Information: Pedro T. P. Lopes was partially supported by FAPESP (Processo Número 2016/07016-8). Publisher Copyright: © 2018, Springer Science+Business Media, LLC, part of Springer Nature. Copyright: Copyright 2019 Elsevier B.V., All rights reserved.
PY - 2019/6/15
Y1 - 2019/6/15
N2 - We prove the spectral invariance of the algebra of classical pseudodifferential boundary value problems on manifolds with conical singularities in the Lp-setting. As a consequence we also obtain the spectral invariance of the classical Boutet de Monvel algebra of zero order operators with parameters. In order to establish these results, we show the equivalence of Fredholm property and ellipticity for both cases.
AB - We prove the spectral invariance of the algebra of classical pseudodifferential boundary value problems on manifolds with conical singularities in the Lp-setting. As a consequence we also obtain the spectral invariance of the classical Boutet de Monvel algebra of zero order operators with parameters. In order to establish these results, we show the equivalence of Fredholm property and ellipticity for both cases.
KW - Boundary value problems
KW - Manifolds with conical singularities
KW - Pseudodifferential analysis
KW - Spectral invariance
UR - http://www.scopus.com/inward/record.url?scp=85043456774&partnerID=8YFLogxK
U2 - 10.48550/arXiv.1709.06817
DO - 10.48550/arXiv.1709.06817
M3 - Article
AN - SCOPUS:85043456774
VL - 25
SP - 1147
EP - 1202
JO - Journal of Fourier Analysis and Applications
JF - Journal of Fourier Analysis and Applications
SN - 1069-5869
IS - 3
ER -