Spectral invariance for algebras of pseudodifferential operators on besov-triebel-lizorkin spaces

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autorschaft

  • Hans Gerd Leopold
  • Elmar Schrohe

Externe Organisationen

  • Friedrich-Schiller-Universität Jena
  • Johannes Gutenberg-Universität Mainz
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)99-110
Seitenumfang12
FachzeitschriftManuscripta mathematica
Jahrgang78
Ausgabenummer1
PublikationsstatusVeröffentlicht - Dez. 1993
Extern publiziertJa

Abstract

The algebra of pseudodifferential operators with symbols in S(Formula presented.), δ<1, is shown to be a spectrally invariant subalgebra of ℒ(b(Formula presented.)) and ℒ(F(Formula presented.)). The spectrum of each of these pseudodifferential operators acting on B(Formula presented.) or F(Formula presented.) is independent of the choice of s, p, and q.

ASJC Scopus Sachgebiete

Zitieren

Spectral invariance for algebras of pseudodifferential operators on besov-triebel-lizorkin spaces. / Leopold, Hans Gerd; Schrohe, Elmar.
in: Manuscripta mathematica, Jahrgang 78, Nr. 1, 12.1993, S. 99-110.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Leopold, Hans Gerd ; Schrohe, Elmar. / Spectral invariance for algebras of pseudodifferential operators on besov-triebel-lizorkin spaces. in: Manuscripta mathematica. 1993 ; Jahrgang 78, Nr. 1. S. 99-110.
Download
@article{f45173688f3643f3ab195a85701333c3,
title = "Spectral invariance for algebras of pseudodifferential operators on besov-triebel-lizorkin spaces",
abstract = "The algebra of pseudodifferential operators with symbols in S(Formula presented.), δ<1, is shown to be a spectrally invariant subalgebra of ℒ(b(Formula presented.)) and ℒ(F(Formula presented.)). The spectrum of each of these pseudodifferential operators acting on B(Formula presented.) or F(Formula presented.) is independent of the choice of s, p, and q.",
author = "Leopold, {Hans Gerd} and Elmar Schrohe",
note = "Copyright: Copyright 2017 Elsevier B.V., All rights reserved.",
year = "1993",
month = dec,
doi = "10.1007/BF02599303",
language = "English",
volume = "78",
pages = "99--110",
journal = "Manuscripta mathematica",
issn = "0025-2611",
publisher = "Springer New York",
number = "1",

}

Download

TY - JOUR

T1 - Spectral invariance for algebras of pseudodifferential operators on besov-triebel-lizorkin spaces

AU - Leopold, Hans Gerd

AU - Schrohe, Elmar

N1 - Copyright: Copyright 2017 Elsevier B.V., All rights reserved.

PY - 1993/12

Y1 - 1993/12

N2 - The algebra of pseudodifferential operators with symbols in S(Formula presented.), δ<1, is shown to be a spectrally invariant subalgebra of ℒ(b(Formula presented.)) and ℒ(F(Formula presented.)). The spectrum of each of these pseudodifferential operators acting on B(Formula presented.) or F(Formula presented.) is independent of the choice of s, p, and q.

AB - The algebra of pseudodifferential operators with symbols in S(Formula presented.), δ<1, is shown to be a spectrally invariant subalgebra of ℒ(b(Formula presented.)) and ℒ(F(Formula presented.)). The spectrum of each of these pseudodifferential operators acting on B(Formula presented.) or F(Formula presented.) is independent of the choice of s, p, and q.

UR - http://www.scopus.com/inward/record.url?scp=0039217569&partnerID=8YFLogxK

U2 - 10.1007/BF02599303

DO - 10.1007/BF02599303

M3 - Article

AN - SCOPUS:0039217569

VL - 78

SP - 99

EP - 110

JO - Manuscripta mathematica

JF - Manuscripta mathematica

SN - 0025-2611

IS - 1

ER -