Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 237-254 |
Seitenumfang | 18 |
Fachzeitschrift | Annals of Global Analysis and Geometry |
Jahrgang | 10 |
Ausgabenummer | 3 |
Publikationsstatus | Veröffentlicht - Jan. 1992 |
Extern publiziert | Ja |
Abstract
The pseudodifferential operators with symbols in the Grushin classes \~Sinf0supρ,δ, 0 ≤ δ < ρ ≤ 1, of slowly varying symbols are shown to form spectrally invariant unital Frécher-*-algebras (Ψ*-algebras) in L(L2(Rn)) and in L(Hγst) for weighted Sobolev spaces Hinfγsup stdefined via a weight d function γ. In all cases, the Fredholm property of an operator can be characterized by uniform ellipticity of the symbol. This gives a converse to theorems of Grushin and Kumano-Ta-Taniguchi. Both, the spectrum and the Fredholm spectrum of an operator turn out to be independent of the choices of s, t and γ. The characterization of the Fredholm property by uniform ellipticity leads to an index theorem for the Fredholm operators in these classes, extending results of Fedosov and Hörmander.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Analysis
- Sozialwissenschaften (insg.)
- Politikwissenschaften und internationale Beziehungen
- Mathematik (insg.)
- Geometrie und Topologie
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Annals of Global Analysis and Geometry, Jahrgang 10, Nr. 3, 01.1992, S. 237-254.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Spectral invariance, ellipticity, and the Fredholm property for pseudodifferential operators on weighted Sobolev spaces
AU - Schrohe, Elmar
N1 - Copyright: Copyright 2007 Elsevier B.V., All rights reserved.
PY - 1992/1
Y1 - 1992/1
N2 - The pseudodifferential operators with symbols in the Grushin classes \~Sinf0supρ,δ, 0 ≤ δ < ρ ≤ 1, of slowly varying symbols are shown to form spectrally invariant unital Frécher-*-algebras (Ψ*-algebras) in L(L2(Rn)) and in L(Hγst) for weighted Sobolev spaces Hinfγsup stdefined via a weight d function γ. In all cases, the Fredholm property of an operator can be characterized by uniform ellipticity of the symbol. This gives a converse to theorems of Grushin and Kumano-Ta-Taniguchi. Both, the spectrum and the Fredholm spectrum of an operator turn out to be independent of the choices of s, t and γ. The characterization of the Fredholm property by uniform ellipticity leads to an index theorem for the Fredholm operators in these classes, extending results of Fedosov and Hörmander.
AB - The pseudodifferential operators with symbols in the Grushin classes \~Sinf0supρ,δ, 0 ≤ δ < ρ ≤ 1, of slowly varying symbols are shown to form spectrally invariant unital Frécher-*-algebras (Ψ*-algebras) in L(L2(Rn)) and in L(Hγst) for weighted Sobolev spaces Hinfγsup stdefined via a weight d function γ. In all cases, the Fredholm property of an operator can be characterized by uniform ellipticity of the symbol. This gives a converse to theorems of Grushin and Kumano-Ta-Taniguchi. Both, the spectrum and the Fredholm spectrum of an operator turn out to be independent of the choices of s, t and γ. The characterization of the Fredholm property by uniform ellipticity leads to an index theorem for the Fredholm operators in these classes, extending results of Fedosov and Hörmander.
KW - ellipticity
KW - Fredholm operators
KW - MSC 1991: 47G30, 47A53, 47D25, 46H35
KW - Pseudodifferential operators
KW - spectral invariance
UR - http://www.scopus.com/inward/record.url?scp=0041095295&partnerID=8YFLogxK
U2 - 10.1007/BF00136867
DO - 10.1007/BF00136867
M3 - Article
AN - SCOPUS:0041095295
VL - 10
SP - 237
EP - 254
JO - Annals of Global Analysis and Geometry
JF - Annals of Global Analysis and Geometry
SN - 0232-704X
IS - 3
ER -