Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 633-646 |
Seitenumfang | 14 |
Fachzeitschrift | Annals of Geophysics |
Jahrgang | 48 |
Ausgabenummer | 4-5 |
Publikationsstatus | Veröffentlicht - Aug. 2005 |
Abstract
The effect of pressure, temperature, and melt composition on CO2 and H2O solubilities in aluminosilicate melts, coexisting with CO2-H2O fluids, is discussed on the basis of previously published and new experimental data. The datasets have been chosen so that CO2 and H2O are the main fluid components and the conclusions are only valid for relatively oxidizing conditions. The most important parameters controlling the solubilities of H2O and CO2 are pressure and composition of melt and fluid. On the other hand, the effect of temperature on volatile solubilities is relatively small. At pressures up to 200 MPa, intermediate compositions such as dacite, in which both molecular CO2 and carbonate species can be dissolved, show higher volatile solubilities than rhyolite and basalt. At higher pressures (0.5 to 1 GPa), basaltic melts can incorporate higher amounts of carbon dioxide (by a factor of 2 to 3) than rhyolitic and dacitic melts. Henrian behavior is observed only for CO2 solubility in equilibrium with H2O-CO2 fluids at pressures < 100 MPa, whereas at higher pressures CO2 solubility varies nonlinearly with CO2 fugacity.The positive deviation from linearity with almost constant CO2 solubility at low water activity indicates that dissolved water strongly enhances the solubility Of CO2. Water always shows non-Henrian solubility behavior because of its complex dissolution mechanism (incorporation of OH-groups and H2O molecules in the melt). The model of Newman and Lowen-stern (2002), in which ideal mixing between volatiles in both fluid and melt phases is assumed, reproduces adequately the experimental data for rhyolitic and basaltic compositions at pressures below 200 MPa but shows noticeable disagreement at higher pressures, especially for basalt. The empirical model of Liu et al. (2004) is applicable to rhyolitic melts in a wide range of pressure (0-500)MPa) and temperature (700-1200°C) but cannot be used for other melt compositions. The thermodynamic approach of Papale (1999) allows to calculate the effect of melt composition on volatile solubilities but-needs an update to account for more recent experimental data. A disadvantage of this model is that it is not available as a program code. The review indicates a crucial need of new experimental data for scarcely investigated field of pressures and fluid compositions and new models describing evident non-ideality of H-C-O fluid solubility in silicate melts at high pressures.
ASJC Scopus Sachgebiete
- Erdkunde und Planetologie (insg.)
- Geophysik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Annals of Geophysics, Jahrgang 48, Nr. 4-5, 08.2005, S. 633-646.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Solubility of C-O-H mixtures in natural melts
T2 - New experimental data and application range of recent models
AU - Botcharnikov, Roman
AU - Freise, Marcus
AU - Holtz, Francois
AU - Behrens, Harald
N1 - Copyright: Copyright 2008 Elsevier B.V., All rights reserved.
PY - 2005/8
Y1 - 2005/8
N2 - The effect of pressure, temperature, and melt composition on CO2 and H2O solubilities in aluminosilicate melts, coexisting with CO2-H2O fluids, is discussed on the basis of previously published and new experimental data. The datasets have been chosen so that CO2 and H2O are the main fluid components and the conclusions are only valid for relatively oxidizing conditions. The most important parameters controlling the solubilities of H2O and CO2 are pressure and composition of melt and fluid. On the other hand, the effect of temperature on volatile solubilities is relatively small. At pressures up to 200 MPa, intermediate compositions such as dacite, in which both molecular CO2 and carbonate species can be dissolved, show higher volatile solubilities than rhyolite and basalt. At higher pressures (0.5 to 1 GPa), basaltic melts can incorporate higher amounts of carbon dioxide (by a factor of 2 to 3) than rhyolitic and dacitic melts. Henrian behavior is observed only for CO2 solubility in equilibrium with H2O-CO2 fluids at pressures < 100 MPa, whereas at higher pressures CO2 solubility varies nonlinearly with CO2 fugacity.The positive deviation from linearity with almost constant CO2 solubility at low water activity indicates that dissolved water strongly enhances the solubility Of CO2. Water always shows non-Henrian solubility behavior because of its complex dissolution mechanism (incorporation of OH-groups and H2O molecules in the melt). The model of Newman and Lowen-stern (2002), in which ideal mixing between volatiles in both fluid and melt phases is assumed, reproduces adequately the experimental data for rhyolitic and basaltic compositions at pressures below 200 MPa but shows noticeable disagreement at higher pressures, especially for basalt. The empirical model of Liu et al. (2004) is applicable to rhyolitic melts in a wide range of pressure (0-500)MPa) and temperature (700-1200°C) but cannot be used for other melt compositions. The thermodynamic approach of Papale (1999) allows to calculate the effect of melt composition on volatile solubilities but-needs an update to account for more recent experimental data. A disadvantage of this model is that it is not available as a program code. The review indicates a crucial need of new experimental data for scarcely investigated field of pressures and fluid compositions and new models describing evident non-ideality of H-C-O fluid solubility in silicate melts at high pressures.
AB - The effect of pressure, temperature, and melt composition on CO2 and H2O solubilities in aluminosilicate melts, coexisting with CO2-H2O fluids, is discussed on the basis of previously published and new experimental data. The datasets have been chosen so that CO2 and H2O are the main fluid components and the conclusions are only valid for relatively oxidizing conditions. The most important parameters controlling the solubilities of H2O and CO2 are pressure and composition of melt and fluid. On the other hand, the effect of temperature on volatile solubilities is relatively small. At pressures up to 200 MPa, intermediate compositions such as dacite, in which both molecular CO2 and carbonate species can be dissolved, show higher volatile solubilities than rhyolite and basalt. At higher pressures (0.5 to 1 GPa), basaltic melts can incorporate higher amounts of carbon dioxide (by a factor of 2 to 3) than rhyolitic and dacitic melts. Henrian behavior is observed only for CO2 solubility in equilibrium with H2O-CO2 fluids at pressures < 100 MPa, whereas at higher pressures CO2 solubility varies nonlinearly with CO2 fugacity.The positive deviation from linearity with almost constant CO2 solubility at low water activity indicates that dissolved water strongly enhances the solubility Of CO2. Water always shows non-Henrian solubility behavior because of its complex dissolution mechanism (incorporation of OH-groups and H2O molecules in the melt). The model of Newman and Lowen-stern (2002), in which ideal mixing between volatiles in both fluid and melt phases is assumed, reproduces adequately the experimental data for rhyolitic and basaltic compositions at pressures below 200 MPa but shows noticeable disagreement at higher pressures, especially for basalt. The empirical model of Liu et al. (2004) is applicable to rhyolitic melts in a wide range of pressure (0-500)MPa) and temperature (700-1200°C) but cannot be used for other melt compositions. The thermodynamic approach of Papale (1999) allows to calculate the effect of melt composition on volatile solubilities but-needs an update to account for more recent experimental data. A disadvantage of this model is that it is not available as a program code. The review indicates a crucial need of new experimental data for scarcely investigated field of pressures and fluid compositions and new models describing evident non-ideality of H-C-O fluid solubility in silicate melts at high pressures.
KW - CO
KW - Experimental data
KW - HO
KW - Mixed fluid
KW - Silicate melt
KW - Solubility
UR - http://www.scopus.com/inward/record.url?scp=22444442797&partnerID=8YFLogxK
U2 - https://doi.org/10.4401/ag-3224
DO - https://doi.org/10.4401/ag-3224
M3 - Article
AN - SCOPUS:22444442797
VL - 48
SP - 633
EP - 646
JO - Annals of Geophysics
JF - Annals of Geophysics
SN - 1593-5213
IS - 4-5
ER -