Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 13728 |
Fachzeitschrift | Scientific reports |
Jahrgang | 9 |
Ausgabenummer | 1 |
Frühes Online-Datum | 24 Sept. 2019 |
Publikationsstatus | Veröffentlicht - Dez. 2019 |
Extern publiziert | Ja |
Abstract
Hybrid interfaces between distinct quantum systems play a major role in the implementation of quantum networks. Quantum states have to be stored in memories to synchronize the photon arrival times for entanglement swapping by projective measurements in quantum repeaters or for entanglement purification. Here, we analyze the distortion of a single-photon wave packet propagating through a dispersive and absorptive medium with high spectral resolution. Single photons are generated from a single In(Ga)As quantum dot with its excitonic transition precisely set relative to the Cesium D1 transition. The delay of spectral components of the single-photon wave packet with almost Fourier-limited width is investigated in detail with a 200 MHz narrow-band monolithic Fabry-Pérot resonator. Reflecting the excited state hyperfine structure of Cesium, “slow light” and “fast light” behavior is observed. As a step towards room-temperature alkali vapor memories, quantum dot photons are delayed for 5 ns by strong dispersion between the two 1.17 GHz hyperfine-split excited state transitions. Based on optical pumping on the hyperfine-split ground states, we propose a simple, all-optically controllable delay for synchronization of heralded narrow-band photons in a quantum network.
ASJC Scopus Sachgebiete
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Scientific reports, Jahrgang 9, Nr. 1, 13728, 12.2019.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Slow and fast single photons from a quantum dot interacting with the excited state hyperfine structure of the Cesium D1-line
AU - Kroh, Tim
AU - Wolters, Janik
AU - Ahlrichs, Andreas
AU - Schell, Andreas W.
AU - Thoma, Alexander
AU - Reitzenstein, Stephan
AU - Wildmann, Johannes S.
AU - Zallo, Eugenio
AU - Trotta, Rinaldo
AU - Rastelli, Armando
AU - Schmidt, Oliver G.
AU - Benson, Oliver
N1 - Funding information: This work was supported by the German Research Foundation (DFG) Collaborative Research Center (CRC) SFB 787 project C2, the German Federal Ministry of Education and Research (BMBF) project Q.Link-X, as well as the European Research Council (ERC) under the European Unions Horizon 2020 Research and Innovation Programme (SPQRel – Entanglement distribution via Semiconductor-Piezoelectric Quantum-Dot Relays, Grant Agreement No. 679183). T.K. acknowledges funding by Rosa Luxemburg Foundation. The authors acknowledge support by the DFG and the Open Access Publication Fund of Humboldt-Universität zu Berlin.
PY - 2019/12
Y1 - 2019/12
N2 - Hybrid interfaces between distinct quantum systems play a major role in the implementation of quantum networks. Quantum states have to be stored in memories to synchronize the photon arrival times for entanglement swapping by projective measurements in quantum repeaters or for entanglement purification. Here, we analyze the distortion of a single-photon wave packet propagating through a dispersive and absorptive medium with high spectral resolution. Single photons are generated from a single In(Ga)As quantum dot with its excitonic transition precisely set relative to the Cesium D1 transition. The delay of spectral components of the single-photon wave packet with almost Fourier-limited width is investigated in detail with a 200 MHz narrow-band monolithic Fabry-Pérot resonator. Reflecting the excited state hyperfine structure of Cesium, “slow light” and “fast light” behavior is observed. As a step towards room-temperature alkali vapor memories, quantum dot photons are delayed for 5 ns by strong dispersion between the two 1.17 GHz hyperfine-split excited state transitions. Based on optical pumping on the hyperfine-split ground states, we propose a simple, all-optically controllable delay for synchronization of heralded narrow-band photons in a quantum network.
AB - Hybrid interfaces between distinct quantum systems play a major role in the implementation of quantum networks. Quantum states have to be stored in memories to synchronize the photon arrival times for entanglement swapping by projective measurements in quantum repeaters or for entanglement purification. Here, we analyze the distortion of a single-photon wave packet propagating through a dispersive and absorptive medium with high spectral resolution. Single photons are generated from a single In(Ga)As quantum dot with its excitonic transition precisely set relative to the Cesium D1 transition. The delay of spectral components of the single-photon wave packet with almost Fourier-limited width is investigated in detail with a 200 MHz narrow-band monolithic Fabry-Pérot resonator. Reflecting the excited state hyperfine structure of Cesium, “slow light” and “fast light” behavior is observed. As a step towards room-temperature alkali vapor memories, quantum dot photons are delayed for 5 ns by strong dispersion between the two 1.17 GHz hyperfine-split excited state transitions. Based on optical pumping on the hyperfine-split ground states, we propose a simple, all-optically controllable delay for synchronization of heralded narrow-band photons in a quantum network.
UR - http://www.scopus.com/inward/record.url?scp=85072621278&partnerID=8YFLogxK
U2 - 10.1038/s41598-019-50062-x
DO - 10.1038/s41598-019-50062-x
M3 - Article
C2 - 31551434
AN - SCOPUS:85072621278
VL - 9
JO - Scientific reports
JF - Scientific reports
SN - 2045-2322
IS - 1
M1 - 13728
ER -