Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 308-317 |
Seitenumfang | 10 |
Fachzeitschrift | Materials Science and Engineering A |
Jahrgang | 588 |
Publikationsstatus | Veröffentlicht - 2 Sept. 2013 |
Abstract
Grain boundaries induce heterogeneities in the deformation response of polycrystals. Studying these local variations in response, measured through high resolution strain measurement techniques, is important and can improve our understanding of fatigue damage initiation in the vicinity of grain boundaries and material hardening. In this work, strain fields across grain boundaries were measured using advanced digital image correlation techniques. In conjunction with strain measurements, grain orientations from electron back-scattered diffraction were used to establish the dislocation reactions at each boundary, providing the corresponding residual Burgers vectors due to slip transmission across the interfaces. A close correlation was found between the magnitude of the residual Burgers vector and the local strain change across the boundary. When the residual Burgers vector magnitude (with respect to the lattice spacing) exceeds 1.0, the high strains on one side of the boundary are paired with low strains across the boundary, indicating the difficulties for slip dislocations to penetrate the grain interfaces. When the residual Burgers vector approaches zero, the strain fields vary smoothly across the boundary due to limited resistance to slip transmission. The results suggest that the residual Burgers vector magnitude, which relates to the GB (Grain Boundary) resistance to slip transmission, enables a quantitative analysis of the accumulation of strain at the microstructural level and the development of strain heterogeneities across grain boundaries. The results are presented for FeCr bcc alloy which exhibits single slip per grain making the measurements and dislocation reactions rather straightforward. The work points to the need to incorporate details of slip dislocation-grain boundary interaction (slip transmission) in modeling research.
ASJC Scopus Sachgebiete
- Werkstoffwissenschaften (insg.)
- Allgemeine Materialwissenschaften
- Physik und Astronomie (insg.)
- Physik der kondensierten Materie
- Ingenieurwesen (insg.)
- Werkstoffmechanik
- Ingenieurwesen (insg.)
- Maschinenbau
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Materials Science and Engineering A, Jahrgang 588, 02.09.2013, S. 308-317.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Slip transmission in bcc FeCr polycrystal
AU - Patriarca, Luca
AU - Abuzaid, Wael
AU - Sehitoglu, Huseyin
AU - Maier, Hans J.
N1 - Funding information: The work was supported by the National Science Foundation, NSF CMMI-113003. This support is gratefully acknowledged.
PY - 2013/9/2
Y1 - 2013/9/2
N2 - Grain boundaries induce heterogeneities in the deformation response of polycrystals. Studying these local variations in response, measured through high resolution strain measurement techniques, is important and can improve our understanding of fatigue damage initiation in the vicinity of grain boundaries and material hardening. In this work, strain fields across grain boundaries were measured using advanced digital image correlation techniques. In conjunction with strain measurements, grain orientations from electron back-scattered diffraction were used to establish the dislocation reactions at each boundary, providing the corresponding residual Burgers vectors due to slip transmission across the interfaces. A close correlation was found between the magnitude of the residual Burgers vector and the local strain change across the boundary. When the residual Burgers vector magnitude (with respect to the lattice spacing) exceeds 1.0, the high strains on one side of the boundary are paired with low strains across the boundary, indicating the difficulties for slip dislocations to penetrate the grain interfaces. When the residual Burgers vector approaches zero, the strain fields vary smoothly across the boundary due to limited resistance to slip transmission. The results suggest that the residual Burgers vector magnitude, which relates to the GB (Grain Boundary) resistance to slip transmission, enables a quantitative analysis of the accumulation of strain at the microstructural level and the development of strain heterogeneities across grain boundaries. The results are presented for FeCr bcc alloy which exhibits single slip per grain making the measurements and dislocation reactions rather straightforward. The work points to the need to incorporate details of slip dislocation-grain boundary interaction (slip transmission) in modeling research.
AB - Grain boundaries induce heterogeneities in the deformation response of polycrystals. Studying these local variations in response, measured through high resolution strain measurement techniques, is important and can improve our understanding of fatigue damage initiation in the vicinity of grain boundaries and material hardening. In this work, strain fields across grain boundaries were measured using advanced digital image correlation techniques. In conjunction with strain measurements, grain orientations from electron back-scattered diffraction were used to establish the dislocation reactions at each boundary, providing the corresponding residual Burgers vectors due to slip transmission across the interfaces. A close correlation was found between the magnitude of the residual Burgers vector and the local strain change across the boundary. When the residual Burgers vector magnitude (with respect to the lattice spacing) exceeds 1.0, the high strains on one side of the boundary are paired with low strains across the boundary, indicating the difficulties for slip dislocations to penetrate the grain interfaces. When the residual Burgers vector approaches zero, the strain fields vary smoothly across the boundary due to limited resistance to slip transmission. The results suggest that the residual Burgers vector magnitude, which relates to the GB (Grain Boundary) resistance to slip transmission, enables a quantitative analysis of the accumulation of strain at the microstructural level and the development of strain heterogeneities across grain boundaries. The results are presented for FeCr bcc alloy which exhibits single slip per grain making the measurements and dislocation reactions rather straightforward. The work points to the need to incorporate details of slip dislocation-grain boundary interaction (slip transmission) in modeling research.
KW - Bcc polycrystal
KW - Digital image correlation
KW - EBSD
KW - Slip transmission
UR - http://www.scopus.com/inward/record.url?scp=84885014833&partnerID=8YFLogxK
U2 - 10.1016/j.msea.2013.08.050
DO - 10.1016/j.msea.2013.08.050
M3 - Article
AN - SCOPUS:84885014833
VL - 588
SP - 308
EP - 317
JO - Materials Science and Engineering A
JF - Materials Science and Engineering A
SN - 0921-5093
ER -