Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 388-410 |
Seitenumfang | 23 |
Fachzeitschrift | Compositio mathematica |
Jahrgang | 160 |
Ausgabenummer | 2 |
Frühes Online-Datum | 5 Jan. 2024 |
Publikationsstatus | Veröffentlicht - Feb. 2024 |
Abstract
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Algebra und Zahlentheorie
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Compositio mathematica, Jahrgang 160, Nr. 2, 02.2024, S. 388-410.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Sixfolds of generalized Kummer type and K3 surfaces
AU - Floccari, Salvatore
N1 - Publisher Copyright: © 2024 The Author(s).
PY - 2024/2
Y1 - 2024/2
N2 - We prove that any hyper-Kähler sixfold of generalized Kummer type has a naturally associated manifold of type. It is obtained as crepant resolution of the quotient of by a group of symplectic involutions acting trivially on its second cohomology. When is projective, the variety is birational to a moduli space of stable sheaves on a uniquely determined projective surface. As an application of this construction we show that the Kuga-Satake correspondence is algebraic for the K3 surfaces, producing infinitely many new families of surfaces of general Picard rank satisfying the Kuga-Satake Hodge conjecture.
AB - We prove that any hyper-Kähler sixfold of generalized Kummer type has a naturally associated manifold of type. It is obtained as crepant resolution of the quotient of by a group of symplectic involutions acting trivially on its second cohomology. When is projective, the variety is birational to a moduli space of stable sheaves on a uniquely determined projective surface. As an application of this construction we show that the Kuga-Satake correspondence is algebraic for the K3 surfaces, producing infinitely many new families of surfaces of general Picard rank satisfying the Kuga-Satake Hodge conjecture.
KW - math.AG
KW - Hodge conjecture
KW - hyper-Kähler varieties
KW - K3 surfaces
UR - http://www.scopus.com/inward/record.url?scp=85183858214&partnerID=8YFLogxK
U2 - 10.48550/arXiv.2210.02948
DO - 10.48550/arXiv.2210.02948
M3 - Article
VL - 160
SP - 388
EP - 410
JO - Compositio mathematica
JF - Compositio mathematica
SN - 0010-437x
IS - 2
ER -