Singularities of normal quartic surfaces III: char = 2, nonsupersingular

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

Organisationseinheiten

Externe Organisationen

  • Universität Bayreuth
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)457-478
Seitenumfang22
FachzeitschriftTunisian Journal of Mathematics
Jahrgang5
Ausgabenummer3
PublikationsstatusVeröffentlicht - 2 Nov. 2023

Abstract

We show, in this third part, that the maximal number of singular points of a normal quartic surface X ⊂ P3K defined over an algebraically closed field K of characteristic 2 is at most 12, if the minimal resolution of X is not a supersingular K3 surface. We also provide a family of explicit examples, valid in any characteristic.

ASJC Scopus Sachgebiete

Zitieren

Singularities of normal quartic surfaces III: char = 2, nonsupersingular. / Catanese, Fabrizio; Schütt, Matthias.
in: Tunisian Journal of Mathematics, Jahrgang 5, Nr. 3, 02.11.2023, S. 457-478.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Catanese F, Schütt M. Singularities of normal quartic surfaces III: char = 2, nonsupersingular. Tunisian Journal of Mathematics. 2023 Nov 2;5(3):457-478. doi: 10.48550/arXiv.2206.03295, 10.2140/tunis.2023.5.457
Catanese, Fabrizio ; Schütt, Matthias. / Singularities of normal quartic surfaces III : char = 2, nonsupersingular. in: Tunisian Journal of Mathematics. 2023 ; Jahrgang 5, Nr. 3. S. 457-478.
Download
@article{238f71c069e24ba1a00bf93da0262ab0,
title = "Singularities of normal quartic surfaces III: char = 2, nonsupersingular",
abstract = "We show, in this third part, that the maximal number of singular points of a normal quartic surface X ⊂ P3K defined over an algebraically closed field K of characteristic 2 is at most 12, if the minimal resolution of X is not a supersingular K3 surface. We also provide a family of explicit examples, valid in any characteristic.",
keywords = "elliptic fibration, K3 surface, normal quartic surface, rational double point",
author = "Fabrizio Catanese and Matthias Sch{\"u}tt",
note = "Funding Information: Catanese acknowledges support of the ERC 2013 Advanced Research Grant - 340258 - TADMICAMT . MSC2020: 14J17, 14J25, 14J28, 14N05, 14N25. Keywords: normal quartic surface, K3 surface, elliptic fibration, rational double point. ",
year = "2023",
month = nov,
day = "2",
doi = "10.48550/arXiv.2206.03295",
language = "English",
volume = "5",
pages = "457--478",
number = "3",

}

Download

TY - JOUR

T1 - Singularities of normal quartic surfaces III

T2 - char = 2, nonsupersingular

AU - Catanese, Fabrizio

AU - Schütt, Matthias

N1 - Funding Information: Catanese acknowledges support of the ERC 2013 Advanced Research Grant - 340258 - TADMICAMT . MSC2020: 14J17, 14J25, 14J28, 14N05, 14N25. Keywords: normal quartic surface, K3 surface, elliptic fibration, rational double point.

PY - 2023/11/2

Y1 - 2023/11/2

N2 - We show, in this third part, that the maximal number of singular points of a normal quartic surface X ⊂ P3K defined over an algebraically closed field K of characteristic 2 is at most 12, if the minimal resolution of X is not a supersingular K3 surface. We also provide a family of explicit examples, valid in any characteristic.

AB - We show, in this third part, that the maximal number of singular points of a normal quartic surface X ⊂ P3K defined over an algebraically closed field K of characteristic 2 is at most 12, if the minimal resolution of X is not a supersingular K3 surface. We also provide a family of explicit examples, valid in any characteristic.

KW - elliptic fibration

KW - K3 surface

KW - normal quartic surface

KW - rational double point

UR - http://www.scopus.com/inward/record.url?scp=85176245773&partnerID=8YFLogxK

U2 - 10.48550/arXiv.2206.03295

DO - 10.48550/arXiv.2206.03295

M3 - Article

AN - SCOPUS:85176245773

VL - 5

SP - 457

EP - 478

JO - Tunisian Journal of Mathematics

JF - Tunisian Journal of Mathematics

SN - 2576-7658

IS - 3

ER -

Von denselben Autoren