Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 457-478 |
Seitenumfang | 22 |
Fachzeitschrift | Tunisian Journal of Mathematics |
Jahrgang | 5 |
Ausgabenummer | 3 |
Publikationsstatus | Veröffentlicht - 2 Nov. 2023 |
Abstract
We show, in this third part, that the maximal number of singular points of a normal quartic surface X ⊂ P3K defined over an algebraically closed field K of characteristic 2 is at most 12, if the minimal resolution of X is not a supersingular K3 surface. We also provide a family of explicit examples, valid in any characteristic.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Allgemeine Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Tunisian Journal of Mathematics, Jahrgang 5, Nr. 3, 02.11.2023, S. 457-478.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Singularities of normal quartic surfaces III
T2 - char = 2, nonsupersingular
AU - Catanese, Fabrizio
AU - Schütt, Matthias
N1 - Funding Information: Catanese acknowledges support of the ERC 2013 Advanced Research Grant - 340258 - TADMICAMT . MSC2020: 14J17, 14J25, 14J28, 14N05, 14N25. Keywords: normal quartic surface, K3 surface, elliptic fibration, rational double point.
PY - 2023/11/2
Y1 - 2023/11/2
N2 - We show, in this third part, that the maximal number of singular points of a normal quartic surface X ⊂ P3K defined over an algebraically closed field K of characteristic 2 is at most 12, if the minimal resolution of X is not a supersingular K3 surface. We also provide a family of explicit examples, valid in any characteristic.
AB - We show, in this third part, that the maximal number of singular points of a normal quartic surface X ⊂ P3K defined over an algebraically closed field K of characteristic 2 is at most 12, if the minimal resolution of X is not a supersingular K3 surface. We also provide a family of explicit examples, valid in any characteristic.
KW - elliptic fibration
KW - K3 surface
KW - normal quartic surface
KW - rational double point
UR - http://www.scopus.com/inward/record.url?scp=85176245773&partnerID=8YFLogxK
U2 - 10.48550/arXiv.2206.03295
DO - 10.48550/arXiv.2206.03295
M3 - Article
AN - SCOPUS:85176245773
VL - 5
SP - 457
EP - 478
JO - Tunisian Journal of Mathematics
JF - Tunisian Journal of Mathematics
SN - 2576-7658
IS - 3
ER -