Simplicial arrangements on convex cones

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

Externe Organisationen

  • Justus-Liebig-Universität Gießen
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)147-191
Seitenumfang45
FachzeitschriftRendiconti del Seminario Matematico dell 'Universita' di Padova/Mathematical Journal of the University of Padova
Jahrgang138
PublikationsstatusVeröffentlicht - 1 Jan. 2017

Abstract

We introduce the notion of a Tits arrangement on a convex open cone as a special case of (infinite) simplicial arrangements. Such an object carries a simplicial structure similar to the geometric representation of Coxeter groups. The standard constructions of subarrangements and restrictions, which are known in the case of finite hyperplane arrangements, work as well in this more general setting.

ASJC Scopus Sachgebiete

Zitieren

Simplicial arrangements on convex cones. / Cuntz, M.; Muhlherr, B.; Weigel, Ch J.
in: Rendiconti del Seminario Matematico dell 'Universita' di Padova/Mathematical Journal of the University of Padova, Jahrgang 138, 01.01.2017, S. 147-191.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Cuntz, M, Muhlherr, B & Weigel, CJ 2017, 'Simplicial arrangements on convex cones', Rendiconti del Seminario Matematico dell 'Universita' di Padova/Mathematical Journal of the University of Padova, Jg. 138, S. 147-191. https://doi.org/10.4171/RSMUP/138-8
Cuntz, M., Muhlherr, B., & Weigel, C. J. (2017). Simplicial arrangements on convex cones. Rendiconti del Seminario Matematico dell 'Universita' di Padova/Mathematical Journal of the University of Padova, 138, 147-191. https://doi.org/10.4171/RSMUP/138-8
Cuntz M, Muhlherr B, Weigel CJ. Simplicial arrangements on convex cones. Rendiconti del Seminario Matematico dell 'Universita' di Padova/Mathematical Journal of the University of Padova. 2017 Jan 1;138:147-191. doi: 10.4171/RSMUP/138-8
Cuntz, M. ; Muhlherr, B. ; Weigel, Ch J. / Simplicial arrangements on convex cones. in: Rendiconti del Seminario Matematico dell 'Universita' di Padova/Mathematical Journal of the University of Padova. 2017 ; Jahrgang 138. S. 147-191.
Download
@article{da5db30510d447b59c1f615e65f4a432,
title = "Simplicial arrangements on convex cones",
abstract = "We introduce the notion of a Tits arrangement on a convex open cone as a special case of (infinite) simplicial arrangements. Such an object carries a simplicial structure similar to the geometric representation of Coxeter groups. The standard constructions of subarrangements and restrictions, which are known in the case of finite hyperplane arrangements, work as well in this more general setting.",
keywords = "Coxeter group, Simplicial arrangement, Tits cone",
author = "M. Cuntz and B. Muhlherr and Weigel, {Ch J.}",
note = "Publisher Copyright: {\textcopyright} 2017, Universita di Padova. All rights reserved. Copyright: Copyright 2018 Elsevier B.V., All rights reserved.",
year = "2017",
month = jan,
day = "1",
doi = "10.4171/RSMUP/138-8",
language = "English",
volume = "138",
pages = "147--191",

}

Download

TY - JOUR

T1 - Simplicial arrangements on convex cones

AU - Cuntz, M.

AU - Muhlherr, B.

AU - Weigel, Ch J.

N1 - Publisher Copyright: © 2017, Universita di Padova. All rights reserved. Copyright: Copyright 2018 Elsevier B.V., All rights reserved.

PY - 2017/1/1

Y1 - 2017/1/1

N2 - We introduce the notion of a Tits arrangement on a convex open cone as a special case of (infinite) simplicial arrangements. Such an object carries a simplicial structure similar to the geometric representation of Coxeter groups. The standard constructions of subarrangements and restrictions, which are known in the case of finite hyperplane arrangements, work as well in this more general setting.

AB - We introduce the notion of a Tits arrangement on a convex open cone as a special case of (infinite) simplicial arrangements. Such an object carries a simplicial structure similar to the geometric representation of Coxeter groups. The standard constructions of subarrangements and restrictions, which are known in the case of finite hyperplane arrangements, work as well in this more general setting.

KW - Coxeter group

KW - Simplicial arrangement

KW - Tits cone

UR - http://www.scopus.com/inward/record.url?scp=85041526897&partnerID=8YFLogxK

U2 - 10.4171/RSMUP/138-8

DO - 10.4171/RSMUP/138-8

M3 - Article

AN - SCOPUS:85041526897

VL - 138

SP - 147

EP - 191

JO - Rendiconti del Seminario Matematico dell 'Universita' di Padova/Mathematical Journal of the University of Padova

JF - Rendiconti del Seminario Matematico dell 'Universita' di Padova/Mathematical Journal of the University of Padova

SN - 0041-8994

ER -

Von denselben Autoren