Short-term dynamics of slurry-derived plant and microbial sugars in a temperate grassland soil as assessed by compound-specific δ13C analyses

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autorschaft

Externe Organisationen

  • Universität Bayreuth
  • Aberystwyth University
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)1437-1446
Seitenumfang10
FachzeitschriftRapid Communications in Mass Spectrometry
Jahrgang19
Ausgabenummer11
PublikationsstatusVeröffentlicht - 2005

Abstract

In view of recent discussions about climate change and the anthropogenically enhanced greenhouse effect, the aim of this study was to determine the short-term carbon (C) dynamics in a grassland soil after slurry application. It is known that, depending on cultivation practices, agroecosystems can act either as sources or as sinks for atmospheric CO 2. C3 and C4 slurries were applied, differing in their stable C isotope signature, to be able to differentiate between native (soil-inherent) and fresh (slurry-applied) C. Samples were taken from 0-2, 2-7.5 and 7.5-15 cm soil depths from 90 days before until 4 weeks after slurry application at various intervals. We carried out compound-specific stable isotope analysis (CSIA) of plant- (arabinose and xylose) and microbial-derived sugars (fucose and rhamnose). Up to 45% of the applied slurry-derived xylose was found in the 0-2 cm soil depth within 24 h after slurry application, with this figure decreasing rapidly and then increasing again towards the end of the experiment. Therefore, during the first phase of slurry incorporation, preferentially the soluble part of slurry entered the first 2 cm of soil while, after about 2 weeks, particulate slurry-derived organic matter was incorporated into the soil. The ratio between plant- and microbial-derived sugars together with δ13C values of individual sugars in the 2-7.5 cm soil depth revealed that the dissipation of sugars from the 0-2 cm soil depth was not only due to leaching, but also was caused by microbial degradation of the fresh C because slurry did not contain significant amounts of rhamnose while the δ13C values of rhamnose became progressively enriched in 13C during the experiment. Stable isotope measurements of bulk soil previously only showed significant differences between C4 and C3 plots at 0-2 cm soil depth. The CSIA of the individual sugars was much more sensitive than bulk isotope measurements, revealing significant differences between C4 and C3 plots even at the 2-7.5 cm soil depth during the first phase of the experiment. Additionally, the dynamics of slurry-derived plant and microbial sugars could be followed specifically.

ASJC Scopus Sachgebiete

Ziele für nachhaltige Entwicklung

Zitieren

Short-term dynamics of slurry-derived plant and microbial sugars in a temperate grassland soil as assessed by compound-specific δ13C analyses. / Sauheitl, Leopold; Glaser, Bruno; Bol, Roland.
in: Rapid Communications in Mass Spectrometry, Jahrgang 19, Nr. 11, 2005, S. 1437-1446.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Download
@article{c700449d88814a20b8d47300f07d513b,
title = "Short-term dynamics of slurry-derived plant and microbial sugars in a temperate grassland soil as assessed by compound-specific δ13C analyses",
abstract = "In view of recent discussions about climate change and the anthropogenically enhanced greenhouse effect, the aim of this study was to determine the short-term carbon (C) dynamics in a grassland soil after slurry application. It is known that, depending on cultivation practices, agroecosystems can act either as sources or as sinks for atmospheric CO 2. C3 and C4 slurries were applied, differing in their stable C isotope signature, to be able to differentiate between native (soil-inherent) and fresh (slurry-applied) C. Samples were taken from 0-2, 2-7.5 and 7.5-15 cm soil depths from 90 days before until 4 weeks after slurry application at various intervals. We carried out compound-specific stable isotope analysis (CSIA) of plant- (arabinose and xylose) and microbial-derived sugars (fucose and rhamnose). Up to 45% of the applied slurry-derived xylose was found in the 0-2 cm soil depth within 24 h after slurry application, with this figure decreasing rapidly and then increasing again towards the end of the experiment. Therefore, during the first phase of slurry incorporation, preferentially the soluble part of slurry entered the first 2 cm of soil while, after about 2 weeks, particulate slurry-derived organic matter was incorporated into the soil. The ratio between plant- and microbial-derived sugars together with δ13C values of individual sugars in the 2-7.5 cm soil depth revealed that the dissipation of sugars from the 0-2 cm soil depth was not only due to leaching, but also was caused by microbial degradation of the fresh C because slurry did not contain significant amounts of rhamnose while the δ13C values of rhamnose became progressively enriched in 13C during the experiment. Stable isotope measurements of bulk soil previously only showed significant differences between C4 and C3 plots at 0-2 cm soil depth. The CSIA of the individual sugars was much more sensitive than bulk isotope measurements, revealing significant differences between C4 and C3 plots even at the 2-7.5 cm soil depth during the first phase of the experiment. Additionally, the dynamics of slurry-derived plant and microbial sugars could be followed specifically.",
author = "Leopold Sauheitl and Bruno Glaser and Roland Bol",
note = "Copyright: Copyright 2008 Elsevier B.V., All rights reserved.",
year = "2005",
doi = "10.1002/rcm.1965",
language = "English",
volume = "19",
pages = "1437--1446",
journal = "Rapid Communications in Mass Spectrometry",
issn = "0951-4198",
publisher = "John Wiley and Sons Ltd",
number = "11",

}

Download

TY - JOUR

T1 - Short-term dynamics of slurry-derived plant and microbial sugars in a temperate grassland soil as assessed by compound-specific δ13C analyses

AU - Sauheitl, Leopold

AU - Glaser, Bruno

AU - Bol, Roland

N1 - Copyright: Copyright 2008 Elsevier B.V., All rights reserved.

PY - 2005

Y1 - 2005

N2 - In view of recent discussions about climate change and the anthropogenically enhanced greenhouse effect, the aim of this study was to determine the short-term carbon (C) dynamics in a grassland soil after slurry application. It is known that, depending on cultivation practices, agroecosystems can act either as sources or as sinks for atmospheric CO 2. C3 and C4 slurries were applied, differing in their stable C isotope signature, to be able to differentiate between native (soil-inherent) and fresh (slurry-applied) C. Samples were taken from 0-2, 2-7.5 and 7.5-15 cm soil depths from 90 days before until 4 weeks after slurry application at various intervals. We carried out compound-specific stable isotope analysis (CSIA) of plant- (arabinose and xylose) and microbial-derived sugars (fucose and rhamnose). Up to 45% of the applied slurry-derived xylose was found in the 0-2 cm soil depth within 24 h after slurry application, with this figure decreasing rapidly and then increasing again towards the end of the experiment. Therefore, during the first phase of slurry incorporation, preferentially the soluble part of slurry entered the first 2 cm of soil while, after about 2 weeks, particulate slurry-derived organic matter was incorporated into the soil. The ratio between plant- and microbial-derived sugars together with δ13C values of individual sugars in the 2-7.5 cm soil depth revealed that the dissipation of sugars from the 0-2 cm soil depth was not only due to leaching, but also was caused by microbial degradation of the fresh C because slurry did not contain significant amounts of rhamnose while the δ13C values of rhamnose became progressively enriched in 13C during the experiment. Stable isotope measurements of bulk soil previously only showed significant differences between C4 and C3 plots at 0-2 cm soil depth. The CSIA of the individual sugars was much more sensitive than bulk isotope measurements, revealing significant differences between C4 and C3 plots even at the 2-7.5 cm soil depth during the first phase of the experiment. Additionally, the dynamics of slurry-derived plant and microbial sugars could be followed specifically.

AB - In view of recent discussions about climate change and the anthropogenically enhanced greenhouse effect, the aim of this study was to determine the short-term carbon (C) dynamics in a grassland soil after slurry application. It is known that, depending on cultivation practices, agroecosystems can act either as sources or as sinks for atmospheric CO 2. C3 and C4 slurries were applied, differing in their stable C isotope signature, to be able to differentiate between native (soil-inherent) and fresh (slurry-applied) C. Samples were taken from 0-2, 2-7.5 and 7.5-15 cm soil depths from 90 days before until 4 weeks after slurry application at various intervals. We carried out compound-specific stable isotope analysis (CSIA) of plant- (arabinose and xylose) and microbial-derived sugars (fucose and rhamnose). Up to 45% of the applied slurry-derived xylose was found in the 0-2 cm soil depth within 24 h after slurry application, with this figure decreasing rapidly and then increasing again towards the end of the experiment. Therefore, during the first phase of slurry incorporation, preferentially the soluble part of slurry entered the first 2 cm of soil while, after about 2 weeks, particulate slurry-derived organic matter was incorporated into the soil. The ratio between plant- and microbial-derived sugars together with δ13C values of individual sugars in the 2-7.5 cm soil depth revealed that the dissipation of sugars from the 0-2 cm soil depth was not only due to leaching, but also was caused by microbial degradation of the fresh C because slurry did not contain significant amounts of rhamnose while the δ13C values of rhamnose became progressively enriched in 13C during the experiment. Stable isotope measurements of bulk soil previously only showed significant differences between C4 and C3 plots at 0-2 cm soil depth. The CSIA of the individual sugars was much more sensitive than bulk isotope measurements, revealing significant differences between C4 and C3 plots even at the 2-7.5 cm soil depth during the first phase of the experiment. Additionally, the dynamics of slurry-derived plant and microbial sugars could be followed specifically.

UR - http://www.scopus.com/inward/record.url?scp=20444419418&partnerID=8YFLogxK

U2 - 10.1002/rcm.1965

DO - 10.1002/rcm.1965

M3 - Article

C2 - 15880645

AN - SCOPUS:20444419418

VL - 19

SP - 1437

EP - 1446

JO - Rapid Communications in Mass Spectrometry

JF - Rapid Communications in Mass Spectrometry

SN - 0951-4198

IS - 11

ER -

Von denselben Autoren