Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 1437-1446 |
Seitenumfang | 10 |
Fachzeitschrift | Rapid Communications in Mass Spectrometry |
Jahrgang | 19 |
Ausgabenummer | 11 |
Publikationsstatus | Veröffentlicht - 2005 |
Abstract
In view of recent discussions about climate change and the anthropogenically enhanced greenhouse effect, the aim of this study was to determine the short-term carbon (C) dynamics in a grassland soil after slurry application. It is known that, depending on cultivation practices, agroecosystems can act either as sources or as sinks for atmospheric CO 2. C3 and C4 slurries were applied, differing in their stable C isotope signature, to be able to differentiate between native (soil-inherent) and fresh (slurry-applied) C. Samples were taken from 0-2, 2-7.5 and 7.5-15 cm soil depths from 90 days before until 4 weeks after slurry application at various intervals. We carried out compound-specific stable isotope analysis (CSIA) of plant- (arabinose and xylose) and microbial-derived sugars (fucose and rhamnose). Up to 45% of the applied slurry-derived xylose was found in the 0-2 cm soil depth within 24 h after slurry application, with this figure decreasing rapidly and then increasing again towards the end of the experiment. Therefore, during the first phase of slurry incorporation, preferentially the soluble part of slurry entered the first 2 cm of soil while, after about 2 weeks, particulate slurry-derived organic matter was incorporated into the soil. The ratio between plant- and microbial-derived sugars together with δ13C values of individual sugars in the 2-7.5 cm soil depth revealed that the dissipation of sugars from the 0-2 cm soil depth was not only due to leaching, but also was caused by microbial degradation of the fresh C because slurry did not contain significant amounts of rhamnose while the δ13C values of rhamnose became progressively enriched in 13C during the experiment. Stable isotope measurements of bulk soil previously only showed significant differences between C4 and C3 plots at 0-2 cm soil depth. The CSIA of the individual sugars was much more sensitive than bulk isotope measurements, revealing significant differences between C4 and C3 plots even at the 2-7.5 cm soil depth during the first phase of the experiment. Additionally, the dynamics of slurry-derived plant and microbial sugars could be followed specifically.
ASJC Scopus Sachgebiete
- Chemie (insg.)
- Analytische Chemie
- Chemie (insg.)
- Spektroskopie
- Chemie (insg.)
- Organische Chemie
Ziele für nachhaltige Entwicklung
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Rapid Communications in Mass Spectrometry, Jahrgang 19, Nr. 11, 2005, S. 1437-1446.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Short-term dynamics of slurry-derived plant and microbial sugars in a temperate grassland soil as assessed by compound-specific δ13C analyses
AU - Sauheitl, Leopold
AU - Glaser, Bruno
AU - Bol, Roland
N1 - Copyright: Copyright 2008 Elsevier B.V., All rights reserved.
PY - 2005
Y1 - 2005
N2 - In view of recent discussions about climate change and the anthropogenically enhanced greenhouse effect, the aim of this study was to determine the short-term carbon (C) dynamics in a grassland soil after slurry application. It is known that, depending on cultivation practices, agroecosystems can act either as sources or as sinks for atmospheric CO 2. C3 and C4 slurries were applied, differing in their stable C isotope signature, to be able to differentiate between native (soil-inherent) and fresh (slurry-applied) C. Samples were taken from 0-2, 2-7.5 and 7.5-15 cm soil depths from 90 days before until 4 weeks after slurry application at various intervals. We carried out compound-specific stable isotope analysis (CSIA) of plant- (arabinose and xylose) and microbial-derived sugars (fucose and rhamnose). Up to 45% of the applied slurry-derived xylose was found in the 0-2 cm soil depth within 24 h after slurry application, with this figure decreasing rapidly and then increasing again towards the end of the experiment. Therefore, during the first phase of slurry incorporation, preferentially the soluble part of slurry entered the first 2 cm of soil while, after about 2 weeks, particulate slurry-derived organic matter was incorporated into the soil. The ratio between plant- and microbial-derived sugars together with δ13C values of individual sugars in the 2-7.5 cm soil depth revealed that the dissipation of sugars from the 0-2 cm soil depth was not only due to leaching, but also was caused by microbial degradation of the fresh C because slurry did not contain significant amounts of rhamnose while the δ13C values of rhamnose became progressively enriched in 13C during the experiment. Stable isotope measurements of bulk soil previously only showed significant differences between C4 and C3 plots at 0-2 cm soil depth. The CSIA of the individual sugars was much more sensitive than bulk isotope measurements, revealing significant differences between C4 and C3 plots even at the 2-7.5 cm soil depth during the first phase of the experiment. Additionally, the dynamics of slurry-derived plant and microbial sugars could be followed specifically.
AB - In view of recent discussions about climate change and the anthropogenically enhanced greenhouse effect, the aim of this study was to determine the short-term carbon (C) dynamics in a grassland soil after slurry application. It is known that, depending on cultivation practices, agroecosystems can act either as sources or as sinks for atmospheric CO 2. C3 and C4 slurries were applied, differing in their stable C isotope signature, to be able to differentiate between native (soil-inherent) and fresh (slurry-applied) C. Samples were taken from 0-2, 2-7.5 and 7.5-15 cm soil depths from 90 days before until 4 weeks after slurry application at various intervals. We carried out compound-specific stable isotope analysis (CSIA) of plant- (arabinose and xylose) and microbial-derived sugars (fucose and rhamnose). Up to 45% of the applied slurry-derived xylose was found in the 0-2 cm soil depth within 24 h after slurry application, with this figure decreasing rapidly and then increasing again towards the end of the experiment. Therefore, during the first phase of slurry incorporation, preferentially the soluble part of slurry entered the first 2 cm of soil while, after about 2 weeks, particulate slurry-derived organic matter was incorporated into the soil. The ratio between plant- and microbial-derived sugars together with δ13C values of individual sugars in the 2-7.5 cm soil depth revealed that the dissipation of sugars from the 0-2 cm soil depth was not only due to leaching, but also was caused by microbial degradation of the fresh C because slurry did not contain significant amounts of rhamnose while the δ13C values of rhamnose became progressively enriched in 13C during the experiment. Stable isotope measurements of bulk soil previously only showed significant differences between C4 and C3 plots at 0-2 cm soil depth. The CSIA of the individual sugars was much more sensitive than bulk isotope measurements, revealing significant differences between C4 and C3 plots even at the 2-7.5 cm soil depth during the first phase of the experiment. Additionally, the dynamics of slurry-derived plant and microbial sugars could be followed specifically.
UR - http://www.scopus.com/inward/record.url?scp=20444419418&partnerID=8YFLogxK
U2 - 10.1002/rcm.1965
DO - 10.1002/rcm.1965
M3 - Article
C2 - 15880645
AN - SCOPUS:20444419418
VL - 19
SP - 1437
EP - 1446
JO - Rapid Communications in Mass Spectrometry
JF - Rapid Communications in Mass Spectrometry
SN - 0951-4198
IS - 11
ER -