Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 1753-1778 |
Seitenumfang | 26 |
Fachzeitschrift | Algebra & number theory |
Jahrgang | 17 |
Ausgabenummer | 10 |
Publikationsstatus | Veröffentlicht - 19 Sept. 2023 |
Abstract
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Algebra und Zahlentheorie
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Algebra & number theory, Jahrgang 17, Nr. 10, 19.09.2023, S. 1753-1778.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Separation of periods of quartic surfaces
AU - Lairez, Pierre
AU - Sertöz, Emre Can
N1 - Publisher Copyright: © 2023 MSP (Mathematical Sciences Publishers).
PY - 2023/9/19
Y1 - 2023/9/19
N2 - We give a computable lower bound on the distance between two distinct periods of a given quartic surface defined over the algebraic numbers. The main ingredient is the determination of height bounds on components of the Noether--Lefschetz loci. This makes it possible to study the Diophantine properties of periods of quartic surfaces and to certify a part of the numerical computation of their Picard groups.
AB - We give a computable lower bound on the distance between two distinct periods of a given quartic surface defined over the algebraic numbers. The main ingredient is the determination of height bounds on components of the Noether--Lefschetz loci. This makes it possible to study the Diophantine properties of periods of quartic surfaces and to certify a part of the numerical computation of their Picard groups.
KW - math.AG
KW - math.NT
KW - 14Q10, 14J28, 32G20, 11Y16, 14Q20, 11J99
KW - Hodge loci
KW - Diophantine approximation
KW - periods
KW - effective mathematics
KW - K3 surfaces
UR - http://www.scopus.com/inward/record.url?scp=85172683677&partnerID=8YFLogxK
U2 - 10.48550/arXiv.2011.12316
DO - 10.48550/arXiv.2011.12316
M3 - Article
VL - 17
SP - 1753
EP - 1778
JO - Algebra & number theory
JF - Algebra & number theory
SN - 1937-0652
IS - 10
ER -