Loading [MathJax]/extensions/tex2jax.js

Semidistributivity, prime ideals and the subbase lemma

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autorschaft

  • Marcel Erné
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 3
  • Captures
    • Readers: 1
  • Mentions
    • References: 1
see details

Details

OriginalspracheEnglisch
Seiten (von - bis)241-250
Seitenumfang10
FachzeitschriftRendiconti del Circolo Matematico di Palermo
Jahrgang41
Ausgabenummer2
PublikationsstatusVeröffentlicht - Mai 1992

Abstract

We generalize the notions of semidistributive elements and of prime ideals from lattices to arbitrary posets. Then we show that the Boolean prime ideal theorem is equivalent to the statement that if a poset P has a join-semidistributive top element then each proper ideal of P is contained in a prime ideal, while the converse implication holds without any choice principle. Furthermore, the prime ideal theorem is shown to be equivalent to the following order-theoretical generalization of Alexander's subbase lemma: If the top element of a poset P is join-semidistributive and compact in some subbase of P then it is compact in P.

ASJC Scopus Sachgebiete

Zitieren

Semidistributivity, prime ideals and the subbase lemma. / Erné, Marcel.
in: Rendiconti del Circolo Matematico di Palermo, Jahrgang 41, Nr. 2, 05.1992, S. 241-250.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Erné, M 1992, 'Semidistributivity, prime ideals and the subbase lemma', Rendiconti del Circolo Matematico di Palermo, Jg. 41, Nr. 2, S. 241-250. https://doi.org/10.1007/BF02844668
Erné, M. (1992). Semidistributivity, prime ideals and the subbase lemma. Rendiconti del Circolo Matematico di Palermo, 41(2), 241-250. https://doi.org/10.1007/BF02844668
Erné M. Semidistributivity, prime ideals and the subbase lemma. Rendiconti del Circolo Matematico di Palermo. 1992 Mai;41(2):241-250. doi: 10.1007/BF02844668
Erné, Marcel. / Semidistributivity, prime ideals and the subbase lemma. in: Rendiconti del Circolo Matematico di Palermo. 1992 ; Jahrgang 41, Nr. 2. S. 241-250.
Download
@article{511f136429294b129cf9fee58f9a1ce1,
title = "Semidistributivity, prime ideals and the subbase lemma",
abstract = "We generalize the notions of semidistributive elements and of prime ideals from lattices to arbitrary posets. Then we show that the Boolean prime ideal theorem is equivalent to the statement that if a poset P has a join-semidistributive top element then each proper ideal of P is contained in a prime ideal, while the converse implication holds without any choice principle. Furthermore, the prime ideal theorem is shown to be equivalent to the following order-theoretical generalization of Alexander's subbase lemma: If the top element of a poset P is join-semidistributive and compact in some subbase of P then it is compact in P.",
author = "Marcel Ern{\'e}",
year = "1992",
month = may,
doi = "10.1007/BF02844668",
language = "English",
volume = "41",
pages = "241--250",
number = "2",

}

Download

TY - JOUR

T1 - Semidistributivity, prime ideals and the subbase lemma

AU - Erné, Marcel

PY - 1992/5

Y1 - 1992/5

N2 - We generalize the notions of semidistributive elements and of prime ideals from lattices to arbitrary posets. Then we show that the Boolean prime ideal theorem is equivalent to the statement that if a poset P has a join-semidistributive top element then each proper ideal of P is contained in a prime ideal, while the converse implication holds without any choice principle. Furthermore, the prime ideal theorem is shown to be equivalent to the following order-theoretical generalization of Alexander's subbase lemma: If the top element of a poset P is join-semidistributive and compact in some subbase of P then it is compact in P.

AB - We generalize the notions of semidistributive elements and of prime ideals from lattices to arbitrary posets. Then we show that the Boolean prime ideal theorem is equivalent to the statement that if a poset P has a join-semidistributive top element then each proper ideal of P is contained in a prime ideal, while the converse implication holds without any choice principle. Furthermore, the prime ideal theorem is shown to be equivalent to the following order-theoretical generalization of Alexander's subbase lemma: If the top element of a poset P is join-semidistributive and compact in some subbase of P then it is compact in P.

UR - http://www.scopus.com/inward/record.url?scp=51649133857&partnerID=8YFLogxK

U2 - 10.1007/BF02844668

DO - 10.1007/BF02844668

M3 - Article

AN - SCOPUS:51649133857

VL - 41

SP - 241

EP - 250

JO - Rendiconti del Circolo Matematico di Palermo

JF - Rendiconti del Circolo Matematico di Palermo

SN - 0009-725X

IS - 2

ER -