Loading [MathJax]/extensions/tex2jax.js

SemEval-2020 Task 11: Detection of Propaganda Techniques in News Articles

Publikation: Beitrag in Buch/Bericht/Sammelwerk/KonferenzbandAufsatz in KonferenzbandForschungPeer-Review

Autorschaft

  • Giovanni da San Martino
  • Alberto Barrón-Cedeño
  • Henning Wachsmuth
  • Rostislav Petrov

Externe Organisationen

  • Qatar Computing Research institute
  • Università di Bologna
  • Universität Paderborn
  • A Data Pro

Details

OriginalspracheEnglisch
Titel des SammelwerksProceedings of the 14th International Workshop on Semantic Evaluation
Herausgeber/-innenAurelie Herbelot, Xiaodan Zhu, Alexis Palmer, Nathan Schneider, Jonathan May, Ekaterina Shutova
ErscheinungsortBarcelona
Seiten1377-1414
Seitenumfang38
PublikationsstatusVeröffentlicht - Dez. 2020
Extern publiziertJa
Veranstaltung14th International Workshops on Semantic Evaluation, SemEval 2020 - Barcelona, Spanien
Dauer: 12 Dez. 202013 Dez. 2020

Abstract

We present the results and the main findings of SemEval-2020 Task 11 on Detection of Propaganda Techniques in News Articles. The task featured two subtasks. Subtask SI is about Span Identification: given a plain-text document, spot the specific text fragments containing propaganda. Subtask TC is about Technique Classification: given a specific text fragment, in the context of a full document, determine the propaganda technique it uses, choosing from an inventory of 14 possible propaganda techniques. The task attracted a large number of participants: 250 teams signed up to participate and 44 made a submission on the test set. In this paper, we present the task, analyze the results, and discuss the system submissions and the methods they used. For both subtasks, the best systems used pre-trained Transformers and ensembles.

ASJC Scopus Sachgebiete

Zitieren

SemEval-2020 Task 11: Detection of Propaganda Techniques in News Articles. / da San Martino, Giovanni; Barrón-Cedeño, Alberto; Wachsmuth, Henning et al.
Proceedings of the 14th International Workshop on Semantic Evaluation. Hrsg. / Aurelie Herbelot; Xiaodan Zhu; Alexis Palmer; Nathan Schneider; Jonathan May; Ekaterina Shutova. Barcelona , 2020. S. 1377-1414.

Publikation: Beitrag in Buch/Bericht/Sammelwerk/KonferenzbandAufsatz in KonferenzbandForschungPeer-Review

da San Martino, G, Barrón-Cedeño, A, Wachsmuth, H, Petrov, R & Nakov, P 2020, SemEval-2020 Task 11: Detection of Propaganda Techniques in News Articles. in A Herbelot, X Zhu, A Palmer, N Schneider, J May & E Shutova (Hrsg.), Proceedings of the 14th International Workshop on Semantic Evaluation. Barcelona , S. 1377-1414, 14th International Workshops on Semantic Evaluation, SemEval 2020, Barcelona, Spanien, 12 Dez. 2020. https://doi.org/10.48550/arXiv.2009.02696, https://doi.org/10.18653/v1/2020.semeval-1.186
da San Martino, G., Barrón-Cedeño, A., Wachsmuth, H., Petrov, R., & Nakov, P. (2020). SemEval-2020 Task 11: Detection of Propaganda Techniques in News Articles. In A. Herbelot, X. Zhu, A. Palmer, N. Schneider, J. May, & E. Shutova (Hrsg.), Proceedings of the 14th International Workshop on Semantic Evaluation (S. 1377-1414). https://doi.org/10.48550/arXiv.2009.02696, https://doi.org/10.18653/v1/2020.semeval-1.186
da San Martino G, Barrón-Cedeño A, Wachsmuth H, Petrov R, Nakov P. SemEval-2020 Task 11: Detection of Propaganda Techniques in News Articles. in Herbelot A, Zhu X, Palmer A, Schneider N, May J, Shutova E, Hrsg., Proceedings of the 14th International Workshop on Semantic Evaluation. Barcelona . 2020. S. 1377-1414 doi: 10.48550/arXiv.2009.02696, 10.18653/v1/2020.semeval-1.186
da San Martino, Giovanni ; Barrón-Cedeño, Alberto ; Wachsmuth, Henning et al. / SemEval-2020 Task 11 : Detection of Propaganda Techniques in News Articles. Proceedings of the 14th International Workshop on Semantic Evaluation. Hrsg. / Aurelie Herbelot ; Xiaodan Zhu ; Alexis Palmer ; Nathan Schneider ; Jonathan May ; Ekaterina Shutova. Barcelona , 2020. S. 1377-1414
Download
@inproceedings{709b3202ab004f0b869e60ff318d56cd,
title = "SemEval-2020 Task 11: Detection of Propaganda Techniques in News Articles",
abstract = "We present the results and the main findings of SemEval-2020 Task 11 on Detection of Propaganda Techniques in News Articles. The task featured two subtasks. Subtask SI is about Span Identification: given a plain-text document, spot the specific text fragments containing propaganda. Subtask TC is about Technique Classification: given a specific text fragment, in the context of a full document, determine the propaganda technique it uses, choosing from an inventory of 14 possible propaganda techniques. The task attracted a large number of participants: 250 teams signed up to participate and 44 made a submission on the test set. In this paper, we present the task, analyze the results, and discuss the system submissions and the methods they used. For both subtasks, the best systems used pre-trained Transformers and ensembles.",
author = "{da San Martino}, Giovanni and Alberto Barr{\'o}n-Cede{\~n}o and Henning Wachsmuth and Rostislav Petrov and Preslav Nakov",
note = "Funding Information: We thank the anonymous reviewers for their constructive comments and suggestions, which have helped us improve the final version of this paper. We further thank Anton Chernyavskiy for pointing us to the bug in the evaluation script. The task is organized within the Propaganda Analysis Project,11 part of the Tanbih project.12 Tanbih aims to limit the effect of “fake news”, propaganda, and media bias by making users aware of what they are reading, thus promoting media literacy and critical thinking.; 14th International Workshops on Semantic Evaluation, SemEval 2020 ; Conference date: 12-12-2020 Through 13-12-2020",
year = "2020",
month = dec,
doi = "10.48550/arXiv.2009.02696",
language = "English",
isbn = "9781952148316",
pages = "1377--1414",
editor = "Aurelie Herbelot and Xiaodan Zhu and Alexis Palmer and Nathan Schneider and Jonathan May and Ekaterina Shutova",
booktitle = "Proceedings of the 14th International Workshop on Semantic Evaluation",

}

Download

TY - GEN

T1 - SemEval-2020 Task 11

T2 - 14th International Workshops on Semantic Evaluation, SemEval 2020

AU - da San Martino, Giovanni

AU - Barrón-Cedeño, Alberto

AU - Wachsmuth, Henning

AU - Petrov, Rostislav

AU - Nakov, Preslav

N1 - Funding Information: We thank the anonymous reviewers for their constructive comments and suggestions, which have helped us improve the final version of this paper. We further thank Anton Chernyavskiy for pointing us to the bug in the evaluation script. The task is organized within the Propaganda Analysis Project,11 part of the Tanbih project.12 Tanbih aims to limit the effect of “fake news”, propaganda, and media bias by making users aware of what they are reading, thus promoting media literacy and critical thinking.

PY - 2020/12

Y1 - 2020/12

N2 - We present the results and the main findings of SemEval-2020 Task 11 on Detection of Propaganda Techniques in News Articles. The task featured two subtasks. Subtask SI is about Span Identification: given a plain-text document, spot the specific text fragments containing propaganda. Subtask TC is about Technique Classification: given a specific text fragment, in the context of a full document, determine the propaganda technique it uses, choosing from an inventory of 14 possible propaganda techniques. The task attracted a large number of participants: 250 teams signed up to participate and 44 made a submission on the test set. In this paper, we present the task, analyze the results, and discuss the system submissions and the methods they used. For both subtasks, the best systems used pre-trained Transformers and ensembles.

AB - We present the results and the main findings of SemEval-2020 Task 11 on Detection of Propaganda Techniques in News Articles. The task featured two subtasks. Subtask SI is about Span Identification: given a plain-text document, spot the specific text fragments containing propaganda. Subtask TC is about Technique Classification: given a specific text fragment, in the context of a full document, determine the propaganda technique it uses, choosing from an inventory of 14 possible propaganda techniques. The task attracted a large number of participants: 250 teams signed up to participate and 44 made a submission on the test set. In this paper, we present the task, analyze the results, and discuss the system submissions and the methods they used. For both subtasks, the best systems used pre-trained Transformers and ensembles.

UR - http://www.scopus.com/inward/record.url?scp=85123925202&partnerID=8YFLogxK

U2 - 10.48550/arXiv.2009.02696

DO - 10.48550/arXiv.2009.02696

M3 - Conference contribution

AN - SCOPUS:85123925202

SN - 9781952148316

SP - 1377

EP - 1414

BT - Proceedings of the 14th International Workshop on Semantic Evaluation

A2 - Herbelot, Aurelie

A2 - Zhu, Xiaodan

A2 - Palmer, Alexis

A2 - Schneider, Nathan

A2 - May, Jonathan

A2 - Shutova, Ekaterina

CY - Barcelona

Y2 - 12 December 2020 through 13 December 2020

ER -

Von denselben Autoren