Self-optimization of plasmonic nanoantennas in strong femtosecond fields

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autorschaft

  • Liping Shi
  • Bianca Iwan
  • Rana Nicolas
  • Quentin Ripault
  • Jose R.C. Andrade
  • Seunghwoi Han
  • Hyunwoong Kim
  • Willem Boutu
  • Dominik Franz
  • Torsten Heidenblut
  • Carsten Reinhardt
  • Bert Bastiaens
  • Tamas Nagy
  • Ihar Babushkin
  • Uwe Morgner
  • Seung Woo Kim
  • Günter Steinmeyer
  • Hamed Merdji
  • Milutin Kovacev

Externe Organisationen

  • Korea Advanced Institute of Science and Technology (KAIST)
  • Laser Zentrum Hannover e.V. (LZH)
  • University of Twente
  • Laser-Laboratorium Göttingen e.V. (LLG)
  • Universität Paris-Saclay
  • Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI)
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)1038-1043
Seitenumfang6
FachzeitschriftOptica
Jahrgang4
Ausgabenummer9
PublikationsstatusVeröffentlicht - 20 Sept. 2017

Abstract

Plasmonic dimer nanoantennas can significantly boost the electric field strength in the gap region, allowing for a modification of the feed gap geometry by femtosecond laser illumination. Using resonant bowtie antennas to enhance the electric field of a low-fluence femtosecond oscillator, here we experimentally demonstrate highly localized reshaping of the antennas, resulting in a self-optimization of the antenna shape. From high-resolution scanning electron micrographs and two-dimensional energy dispersive x-ray maps, we analyze the near-field enhanced subwavelength ablation at the nanotips and the resulting deposition of ablated materials in the feed gap. The dominant ablation mechanism is attributed to the nonthermal transient unbonding of atoms and electrostatic acceleration of ions. This process is driven by surface plasmon enhanced electron emission, with subsequent acceleration in the vacuum. This ablation is impeded in the presence of an ambient gas. A maximum of sixfold enhancement of the third-harmonic yield is observed during the reshaping process.

ASJC Scopus Sachgebiete

Zitieren

Self-optimization of plasmonic nanoantennas in strong femtosecond fields. / Shi, Liping; Iwan, Bianca; Nicolas, Rana et al.
in: Optica, Jahrgang 4, Nr. 9, 20.09.2017, S. 1038-1043.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Shi, L, Iwan, B, Nicolas, R, Ripault, Q, Andrade, JRC, Han, S, Kim, H, Boutu, W, Franz, D, Heidenblut, T, Reinhardt, C, Bastiaens, B, Nagy, T, Babushkin, I, Morgner, U, Kim, SW, Steinmeyer, G, Merdji, H & Kovacev, M 2017, 'Self-optimization of plasmonic nanoantennas in strong femtosecond fields', Optica, Jg. 4, Nr. 9, S. 1038-1043. https://doi.org/10.1364/OPTICA.4.001038
Shi, L., Iwan, B., Nicolas, R., Ripault, Q., Andrade, J. R. C., Han, S., Kim, H., Boutu, W., Franz, D., Heidenblut, T., Reinhardt, C., Bastiaens, B., Nagy, T., Babushkin, I., Morgner, U., Kim, S. W., Steinmeyer, G., Merdji, H., & Kovacev, M. (2017). Self-optimization of plasmonic nanoantennas in strong femtosecond fields. Optica, 4(9), 1038-1043. https://doi.org/10.1364/OPTICA.4.001038
Shi L, Iwan B, Nicolas R, Ripault Q, Andrade JRC, Han S et al. Self-optimization of plasmonic nanoantennas in strong femtosecond fields. Optica. 2017 Sep 20;4(9):1038-1043. doi: 10.1364/OPTICA.4.001038
Shi, Liping ; Iwan, Bianca ; Nicolas, Rana et al. / Self-optimization of plasmonic nanoantennas in strong femtosecond fields. in: Optica. 2017 ; Jahrgang 4, Nr. 9. S. 1038-1043.
Download
@article{7c1160dbb5874a7ca90a355f5e2c0f43,
title = "Self-optimization of plasmonic nanoantennas in strong femtosecond fields",
abstract = "Plasmonic dimer nanoantennas can significantly boost the electric field strength in the gap region, allowing for a modification of the feed gap geometry by femtosecond laser illumination. Using resonant bowtie antennas to enhance the electric field of a low-fluence femtosecond oscillator, here we experimentally demonstrate highly localized reshaping of the antennas, resulting in a self-optimization of the antenna shape. From high-resolution scanning electron micrographs and two-dimensional energy dispersive x-ray maps, we analyze the near-field enhanced subwavelength ablation at the nanotips and the resulting deposition of ablated materials in the feed gap. The dominant ablation mechanism is attributed to the nonthermal transient unbonding of atoms and electrostatic acceleration of ions. This process is driven by surface plasmon enhanced electron emission, with subsequent acceleration in the vacuum. This ablation is impeded in the presence of an ambient gas. A maximum of sixfold enhancement of the third-harmonic yield is observed during the reshaping process.",
keywords = "Harmonic generation and mixing, Nonlinear optics at surfaces, Subwavelength structures, nanostructures, Surface plasmons",
author = "Liping Shi and Bianca Iwan and Rana Nicolas and Quentin Ripault and Andrade, {Jose R.C.} and Seunghwoi Han and Hyunwoong Kim and Willem Boutu and Dominik Franz and Torsten Heidenblut and Carsten Reinhardt and Bert Bastiaens and Tamas Nagy and Ihar Babushkin and Uwe Morgner and Kim, {Seung Woo} and G{\"u}nter Steinmeyer and Hamed Merdji and Milutin Kovacev",
year = "2017",
month = sep,
day = "20",
doi = "10.1364/OPTICA.4.001038",
language = "English",
volume = "4",
pages = "1038--1043",
journal = "Optica",
issn = "2334-2536",
publisher = "OSA Publishing",
number = "9",

}

Download

TY - JOUR

T1 - Self-optimization of plasmonic nanoantennas in strong femtosecond fields

AU - Shi, Liping

AU - Iwan, Bianca

AU - Nicolas, Rana

AU - Ripault, Quentin

AU - Andrade, Jose R.C.

AU - Han, Seunghwoi

AU - Kim, Hyunwoong

AU - Boutu, Willem

AU - Franz, Dominik

AU - Heidenblut, Torsten

AU - Reinhardt, Carsten

AU - Bastiaens, Bert

AU - Nagy, Tamas

AU - Babushkin, Ihar

AU - Morgner, Uwe

AU - Kim, Seung Woo

AU - Steinmeyer, Günter

AU - Merdji, Hamed

AU - Kovacev, Milutin

PY - 2017/9/20

Y1 - 2017/9/20

N2 - Plasmonic dimer nanoantennas can significantly boost the electric field strength in the gap region, allowing for a modification of the feed gap geometry by femtosecond laser illumination. Using resonant bowtie antennas to enhance the electric field of a low-fluence femtosecond oscillator, here we experimentally demonstrate highly localized reshaping of the antennas, resulting in a self-optimization of the antenna shape. From high-resolution scanning electron micrographs and two-dimensional energy dispersive x-ray maps, we analyze the near-field enhanced subwavelength ablation at the nanotips and the resulting deposition of ablated materials in the feed gap. The dominant ablation mechanism is attributed to the nonthermal transient unbonding of atoms and electrostatic acceleration of ions. This process is driven by surface plasmon enhanced electron emission, with subsequent acceleration in the vacuum. This ablation is impeded in the presence of an ambient gas. A maximum of sixfold enhancement of the third-harmonic yield is observed during the reshaping process.

AB - Plasmonic dimer nanoantennas can significantly boost the electric field strength in the gap region, allowing for a modification of the feed gap geometry by femtosecond laser illumination. Using resonant bowtie antennas to enhance the electric field of a low-fluence femtosecond oscillator, here we experimentally demonstrate highly localized reshaping of the antennas, resulting in a self-optimization of the antenna shape. From high-resolution scanning electron micrographs and two-dimensional energy dispersive x-ray maps, we analyze the near-field enhanced subwavelength ablation at the nanotips and the resulting deposition of ablated materials in the feed gap. The dominant ablation mechanism is attributed to the nonthermal transient unbonding of atoms and electrostatic acceleration of ions. This process is driven by surface plasmon enhanced electron emission, with subsequent acceleration in the vacuum. This ablation is impeded in the presence of an ambient gas. A maximum of sixfold enhancement of the third-harmonic yield is observed during the reshaping process.

KW - Harmonic generation and mixing

KW - Nonlinear optics at surfaces

KW - Subwavelength structures, nanostructures

KW - Surface plasmons

UR - http://www.scopus.com/inward/record.url?scp=85029821741&partnerID=8YFLogxK

U2 - 10.1364/OPTICA.4.001038

DO - 10.1364/OPTICA.4.001038

M3 - Article

AN - SCOPUS:85029821741

VL - 4

SP - 1038

EP - 1043

JO - Optica

JF - Optica

SN - 2334-2536

IS - 9

ER -

Von denselben Autoren