Selective in vitro Synergistic Evaluation of Probiotic Tolerant morpholinyl- and 4-ethylpiperazinyl-Imidazole-chalcone Derivatives on Gastrointestinal System Pathogens

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Tuncay Söylemez
  • Zafer Asım Kaplancıklı
  • Derya Osmaniye
  • Yusuf Özkay
  • Fatih Demirci

Organisationseinheiten

Externe Organisationen

  • Anadolu University
  • Eastern Mediterranean University
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Aufsatznummer258
Seitenumfang9
FachzeitschriftCurrent microbiology
Jahrgang81
Ausgabenummer8
Frühes Online-Datum3 Juli 2024
PublikationsstatusVeröffentlicht - Aug. 2024

Abstract

Imidazole-chalcone compounds are recognised for their broad-spectrum antimicrobial properties. Probiotic-friendly, selective new-generation antimicrobials prove to be more efficient in combating gastrointestinal system pathogens. The aim of this study is to identify imidazole-chalcone derivatives that probiotics tolerate and evaluate their in vitro synergistic antimicrobial effects on pathogens. In this study, fifteen previously identified imidazole-chalcone derivatives were analyzed for their in vitro antimicrobial properties against gastrointestinal microorganisms. Initially, the antimicrobial activity of pathogens was measured using the agar well diffusion method, while the susceptibility of probiotics was determined by microdilution. The chosen imidazole-chalcone derivatives were assessed for synergistic effects using the checkerboard method. Four imidazole-chalcone derivatives to which probiotic bacteria were tolerant exhibited antibacterial and antifungal activity against the human pathogens tested. To our knowledge, this study is the first to reveal the fractional inhibitory concentration (FIC) of combinations of imidazole-chalcone derivatives. Indeed, the minimum inhibitory concentrations (MIC) for morpholinyl- (ZDO-3f) and 4-ethylpiperazinyl- (ZDO-3 m) imidazole-chalcones were notably low when tested against E. coli and B. subtilis, with values of 31.25 μg/mL and 125 μg/mL, respectively. The combination of morpholinyl- and 4-ethylpiperazinyl derivatives demonstrated an indifferent effect against E. coli, but an additive effect was observed for B. subtilis. Additionally, it was observed that imidazole-chalcone derivatives did not exhibit any inhibitory effects on probiotic organisms like Lactobacillus fermentum (CECT-5716), Lactobacillus rhamnosus (GG), and Lactobacillus casei (RSSK-591). This study demonstrates that imidazole-chalcone derivatives that are well tolerated by probiotics can potentially exert a synergistic effect against gastrointestinal system pathogens.

ASJC Scopus Sachgebiete

Zitieren

Selective in vitro Synergistic Evaluation of Probiotic Tolerant morpholinyl- and 4-ethylpiperazinyl-Imidazole-chalcone Derivatives on Gastrointestinal System Pathogens. / Söylemez, Tuncay; Kaplancıklı, Zafer Asım; Osmaniye, Derya et al.
in: Current microbiology, Jahrgang 81, Nr. 8, 258, 08.2024.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Söylemez T, Kaplancıklı ZA, Osmaniye D, Özkay Y, Demirci F. Selective in vitro Synergistic Evaluation of Probiotic Tolerant morpholinyl- and 4-ethylpiperazinyl-Imidazole-chalcone Derivatives on Gastrointestinal System Pathogens. Current microbiology. 2024 Aug;81(8):258. Epub 2024 Jul 3. doi: 10.1007/s00284-024-03788-5
Download
@article{31b69671881244aca8a71e834e347dec,
title = "Selective in vitro Synergistic Evaluation of Probiotic Tolerant morpholinyl- and 4-ethylpiperazinyl-Imidazole-chalcone Derivatives on Gastrointestinal System Pathogens",
abstract = "Imidazole-chalcone compounds are recognised for their broad-spectrum antimicrobial properties. Probiotic-friendly, selective new-generation antimicrobials prove to be more efficient in combating gastrointestinal system pathogens. The aim of this study is to identify imidazole-chalcone derivatives that probiotics tolerate and evaluate their in vitro synergistic antimicrobial effects on pathogens. In this study, fifteen previously identified imidazole-chalcone derivatives were analyzed for their in vitro antimicrobial properties against gastrointestinal microorganisms. Initially, the antimicrobial activity of pathogens was measured using the agar well diffusion method, while the susceptibility of probiotics was determined by microdilution. The chosen imidazole-chalcone derivatives were assessed for synergistic effects using the checkerboard method. Four imidazole-chalcone derivatives to which probiotic bacteria were tolerant exhibited antibacterial and antifungal activity against the human pathogens tested. To our knowledge, this study is the first to reveal the fractional inhibitory concentration (FIC) of combinations of imidazole-chalcone derivatives. Indeed, the minimum inhibitory concentrations (MIC) for morpholinyl- (ZDO-3f) and 4-ethylpiperazinyl- (ZDO-3 m) imidazole-chalcones were notably low when tested against E. coli and B. subtilis, with values of 31.25 μg/mL and 125 μg/mL, respectively. The combination of morpholinyl- and 4-ethylpiperazinyl derivatives demonstrated an indifferent effect against E. coli, but an additive effect was observed for B. subtilis. Additionally, it was observed that imidazole-chalcone derivatives did not exhibit any inhibitory effects on probiotic organisms like Lactobacillus fermentum (CECT-5716), Lactobacillus rhamnosus (GG), and Lactobacillus casei (RSSK-591). This study demonstrates that imidazole-chalcone derivatives that are well tolerated by probiotics can potentially exert a synergistic effect against gastrointestinal system pathogens.",
author = "Tuncay S{\"o}ylemez and Kaplancıklı, {Zafer Asım} and Derya Osmaniye and Yusuf {\"O}zkay and Fatih Demirci",
note = "Publisher Copyright: {\textcopyright} The Author(s) 2024.",
year = "2024",
month = aug,
doi = "10.1007/s00284-024-03788-5",
language = "English",
volume = "81",
journal = "Current microbiology",
issn = "0343-8651",
publisher = "Springer New York",
number = "8",

}

Download

TY - JOUR

T1 - Selective in vitro Synergistic Evaluation of Probiotic Tolerant morpholinyl- and 4-ethylpiperazinyl-Imidazole-chalcone Derivatives on Gastrointestinal System Pathogens

AU - Söylemez, Tuncay

AU - Kaplancıklı, Zafer Asım

AU - Osmaniye, Derya

AU - Özkay, Yusuf

AU - Demirci, Fatih

N1 - Publisher Copyright: © The Author(s) 2024.

PY - 2024/8

Y1 - 2024/8

N2 - Imidazole-chalcone compounds are recognised for their broad-spectrum antimicrobial properties. Probiotic-friendly, selective new-generation antimicrobials prove to be more efficient in combating gastrointestinal system pathogens. The aim of this study is to identify imidazole-chalcone derivatives that probiotics tolerate and evaluate their in vitro synergistic antimicrobial effects on pathogens. In this study, fifteen previously identified imidazole-chalcone derivatives were analyzed for their in vitro antimicrobial properties against gastrointestinal microorganisms. Initially, the antimicrobial activity of pathogens was measured using the agar well diffusion method, while the susceptibility of probiotics was determined by microdilution. The chosen imidazole-chalcone derivatives were assessed for synergistic effects using the checkerboard method. Four imidazole-chalcone derivatives to which probiotic bacteria were tolerant exhibited antibacterial and antifungal activity against the human pathogens tested. To our knowledge, this study is the first to reveal the fractional inhibitory concentration (FIC) of combinations of imidazole-chalcone derivatives. Indeed, the minimum inhibitory concentrations (MIC) for morpholinyl- (ZDO-3f) and 4-ethylpiperazinyl- (ZDO-3 m) imidazole-chalcones were notably low when tested against E. coli and B. subtilis, with values of 31.25 μg/mL and 125 μg/mL, respectively. The combination of morpholinyl- and 4-ethylpiperazinyl derivatives demonstrated an indifferent effect against E. coli, but an additive effect was observed for B. subtilis. Additionally, it was observed that imidazole-chalcone derivatives did not exhibit any inhibitory effects on probiotic organisms like Lactobacillus fermentum (CECT-5716), Lactobacillus rhamnosus (GG), and Lactobacillus casei (RSSK-591). This study demonstrates that imidazole-chalcone derivatives that are well tolerated by probiotics can potentially exert a synergistic effect against gastrointestinal system pathogens.

AB - Imidazole-chalcone compounds are recognised for their broad-spectrum antimicrobial properties. Probiotic-friendly, selective new-generation antimicrobials prove to be more efficient in combating gastrointestinal system pathogens. The aim of this study is to identify imidazole-chalcone derivatives that probiotics tolerate and evaluate their in vitro synergistic antimicrobial effects on pathogens. In this study, fifteen previously identified imidazole-chalcone derivatives were analyzed for their in vitro antimicrobial properties against gastrointestinal microorganisms. Initially, the antimicrobial activity of pathogens was measured using the agar well diffusion method, while the susceptibility of probiotics was determined by microdilution. The chosen imidazole-chalcone derivatives were assessed for synergistic effects using the checkerboard method. Four imidazole-chalcone derivatives to which probiotic bacteria were tolerant exhibited antibacterial and antifungal activity against the human pathogens tested. To our knowledge, this study is the first to reveal the fractional inhibitory concentration (FIC) of combinations of imidazole-chalcone derivatives. Indeed, the minimum inhibitory concentrations (MIC) for morpholinyl- (ZDO-3f) and 4-ethylpiperazinyl- (ZDO-3 m) imidazole-chalcones were notably low when tested against E. coli and B. subtilis, with values of 31.25 μg/mL and 125 μg/mL, respectively. The combination of morpholinyl- and 4-ethylpiperazinyl derivatives demonstrated an indifferent effect against E. coli, but an additive effect was observed for B. subtilis. Additionally, it was observed that imidazole-chalcone derivatives did not exhibit any inhibitory effects on probiotic organisms like Lactobacillus fermentum (CECT-5716), Lactobacillus rhamnosus (GG), and Lactobacillus casei (RSSK-591). This study demonstrates that imidazole-chalcone derivatives that are well tolerated by probiotics can potentially exert a synergistic effect against gastrointestinal system pathogens.

UR - http://www.scopus.com/inward/record.url?scp=85197711887&partnerID=8YFLogxK

U2 - 10.1007/s00284-024-03788-5

DO - 10.1007/s00284-024-03788-5

M3 - Article

C2 - 38960917

AN - SCOPUS:85197711887

VL - 81

JO - Current microbiology

JF - Current microbiology

SN - 0343-8651

IS - 8

M1 - 258

ER -