Details
Titel in Übersetzung | Intelligent order sequencing in manufacturing |
---|---|
Originalsprache | Deutsch |
Seiten (von - bis) | 212-216 |
Seitenumfang | 5 |
Fachzeitschrift | WT Werkstattstechnik |
Jahrgang | 111 |
Ausgabenummer | 4 |
Publikationsstatus | Veröffentlicht - 2021 |
Abstract
Conventional approaches for order sequencing are usually put into practice by rule-based heuristics, requiring manual adjustments if changes to the production system occur. This article presents an approach for decentralized sequencing using deep q-learning. By considering different production key figures for evaluation, the sequencing can be adapted automatically to changes of the production system, thus achieving a reduction of the cycle time.
ASJC Scopus Sachgebiete
- Ingenieurwesen (insg.)
- Steuerungs- und Systemtechnik
- Ingenieurwesen (insg.)
- Fahrzeugbau
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: WT Werkstattstechnik, Jahrgang 111, Nr. 4, 2021, S. 212-216.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Selbstoptimierende Reihenfolgebildung in der Fertigung
AU - Denkena, Berend
AU - Dittrich, Marc André
AU - Fohlmeister, Silas
N1 - Funding information: Die Autoren danken der Deutschen Forschungsgesellschaft (DFG) für die Förderung des Projekts DE 447/181–1 „Selbstoptimierende dezentrale Fertigungssteuerung“.
PY - 2021
Y1 - 2021
N2 - Conventional approaches for order sequencing are usually put into practice by rule-based heuristics, requiring manual adjustments if changes to the production system occur. This article presents an approach for decentralized sequencing using deep q-learning. By considering different production key figures for evaluation, the sequencing can be adapted automatically to changes of the production system, thus achieving a reduction of the cycle time.
AB - Conventional approaches for order sequencing are usually put into practice by rule-based heuristics, requiring manual adjustments if changes to the production system occur. This article presents an approach for decentralized sequencing using deep q-learning. By considering different production key figures for evaluation, the sequencing can be adapted automatically to changes of the production system, thus achieving a reduction of the cycle time.
UR - http://www.scopus.com/inward/record.url?scp=85108259972&partnerID=8YFLogxK
M3 - Artikel
AN - SCOPUS:85108259972
VL - 111
SP - 212
EP - 216
JO - WT Werkstattstechnik
JF - WT Werkstattstechnik
IS - 4
ER -