Search for the isotropic stochastic background using data from Advanced LIGO’s second observing run

Publikation: Beitrag in FachzeitschriftArtikelForschung

Autoren

  • The LIGO Scientific Collaboration
  • Virgo Collaboration
  • V. B. Adya
  • C. Affeldt
  • P. Aufmuth
  • S. L. Danilishin
  • K. Danzmann
  • M. Heurs
  • H. Lück
  • D. Steinmeyer
  • H. Vahlbruch
  • L.-w. Wei
  • D. M. Wilken
  • B. Willke
  • H. Wittel
  • Manuela Hanke
  • J. Hennig
  • D. S. Wu
  • Gerald Bergmann
  • Aparna Bisht
  • Nina Bode
  • P. Booker
  • T. Dent
  • S. Doravari
  • Marc Brinkmann
  • M. Cabero
  • O. de Varona
  • S. Hochheim
  • J. Junker
  • Stefan Kaufer
  • R. Kirchhoff
  • Patrick Koch
  • N. Koper
  • S. M. Köhlenbeck
  • Volker Kringel
  • G. Kuehn
  • S. Leavey
  • J. Lehmann
  • James Lough
  • Kai S. Karvinen
  • S. Khan
  • Moritz Mehmet
  • Arunava Mukherjee
  • M. Nery
  • F. Ohme
  • P. Oppermann
  • Emil Schreiber
  • B. W. Schulte
  • A. Rüdiger
  • M. Phelps
  • O. Puncken
  • Y. Setyawati
  • M. Standke
  • Fabian Thies
  • M. Steinke
  • Michael Weinert
  • F. Wellmann
  • Peter Weßels
  • Maximilian H. Wimmer
  • W. Winkler
  • J. Woehler

Externe Organisationen

  • Washington State University Pullman
  • Inter-University Centre for Astronomy and Astrophysics India
  • University of Adelaide
  • Tata Institute of Fundamental Research (TIFR HYD)
  • LIGO Laboratory
  • Inje University
  • California Institute of Technology (Caltech)
  • Radboud Universität Nijmegen (RU)
  • University of Melbourne
  • University of Texas Rio Grande Valley
  • Monash University
  • Northwestern University
  • Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Aufsatznummer061101
Seitenumfang16
FachzeitschriftPhysical Review D
Jahrgang100
Ausgabenummer6
PublikationsstatusVeröffentlicht - 4 Sept. 2019

Abstract

The stochastic gravitational-wave background is a superposition of sources that are either too weak or too numerous to detect individually. In this study, we present the results from a cross-correlation analysis on data from Advanced LIGO's second observing run (O2), which we combine with the results of the first observing run (O1). We do not find evidence for a stochastic background, so we place upper limits on the normalized energy density in gravitational waves at the 95% credible level of ωGW<6.0×10-8 for a frequency-independent (flat) background and ωGW<4.8×10-8 at 25 Hz for a background of compact binary coalescences. The upper limit improves over the O1 result by a factor of 2.8. Additionally, we place upper limits on the energy density in an isotropic background of scalar- and vector-polarized gravitational waves, and we discuss the implication of these results for models of compact binaries and cosmic string backgrounds. Finally, we present a conservative estimate of the correlated broadband noise due to the magnetic Schumann resonances in O2, based on magnetometer measurements at both the LIGO Hanford and LIGO Livingston observatories. We find that correlated noise is well below the O2 sensitivity.

ASJC Scopus Sachgebiete

Zitieren

Search for the isotropic stochastic background using data from Advanced LIGO’s second observing run. / The LIGO Scientific Collaboration; Virgo Collaboration; Adya, V. B. et al.
in: Physical Review D, Jahrgang 100, Nr. 6, 061101, 04.09.2019.

Publikation: Beitrag in FachzeitschriftArtikelForschung

The LIGO Scientific Collaboration, Virgo Collaboration, Adya, VB, Affeldt, C, Aufmuth, P, Danilishin, SL, Danzmann, K, Heurs, M, Lück, H, Steinmeyer, D, Vahlbruch, H, Wei, L, Wilken, DM, Willke, B, Wittel, H, Hanke, M, Hennig, J, Wu, DS, Bergmann, G, Bisht, A, Bode, N, Booker, P, Dent, T, Doravari, S, Brinkmann, M, Cabero, M, de Varona, O, Hochheim, S, Junker, J, Kaufer, S, Kirchhoff, R, Koch, P, Koper, N, Köhlenbeck, SM, Kringel, V, Kuehn, G, Leavey, S, Lehmann, J, Lough, J, Karvinen, KS, Khan, S, Mehmet, M, Mukherjee, A, Nery, M, Ohme, F, Oppermann, P, Schreiber, E, Schulte, BW, Rüdiger, A, Phelps, M, Puncken, O, Setyawati, Y, Standke, M, Thies, F, Steinke, M, Weinert, M, Wellmann, F, Weßels, P, Wimmer, MH, Winkler, W & Woehler, J 2019, 'Search for the isotropic stochastic background using data from Advanced LIGO’s second observing run', Physical Review D, Jg. 100, Nr. 6, 061101. https://doi.org/10.1103/PhysRevD.100.061101, https://doi.org/10.15488/12075
The LIGO Scientific Collaboration, Virgo Collaboration, Adya, V. B., Affeldt, C., Aufmuth, P., Danilishin, S. L., Danzmann, K., Heurs, M., Lück, H., Steinmeyer, D., Vahlbruch, H., Wei, L., Wilken, D. M., Willke, B., Wittel, H., Hanke, M., Hennig, J., Wu, D. S., Bergmann, G., ... Woehler, J. (2019). Search for the isotropic stochastic background using data from Advanced LIGO’s second observing run. Physical Review D, 100(6), Artikel 061101. https://doi.org/10.1103/PhysRevD.100.061101, https://doi.org/10.15488/12075
The LIGO Scientific Collaboration, Virgo Collaboration, Adya VB, Affeldt C, Aufmuth P, Danilishin SL et al. Search for the isotropic stochastic background using data from Advanced LIGO’s second observing run. Physical Review D. 2019 Sep 4;100(6):061101. doi: 10.1103/PhysRevD.100.061101, 10.15488/12075
The LIGO Scientific Collaboration ; Virgo Collaboration ; Adya, V. B. et al. / Search for the isotropic stochastic background using data from Advanced LIGO’s second observing run. in: Physical Review D. 2019 ; Jahrgang 100, Nr. 6.
Download
@article{e4e4b6ac27524b259796f2460e4f07b4,
title = "Search for the isotropic stochastic background using data from Advanced LIGO{\textquoteright}s second observing run",
abstract = "The stochastic gravitational-wave background is a superposition of sources that are either too weak or too numerous to detect individually. In this study, we present the results from a cross-correlation analysis on data from Advanced LIGO's second observing run (O2), which we combine with the results of the first observing run (O1). We do not find evidence for a stochastic background, so we place upper limits on the normalized energy density in gravitational waves at the 95% credible level of ωGW<6.0×10-8 for a frequency-independent (flat) background and ωGW<4.8×10-8 at 25 Hz for a background of compact binary coalescences. The upper limit improves over the O1 result by a factor of 2.8. Additionally, we place upper limits on the energy density in an isotropic background of scalar- and vector-polarized gravitational waves, and we discuss the implication of these results for models of compact binaries and cosmic string backgrounds. Finally, we present a conservative estimate of the correlated broadband noise due to the magnetic Schumann resonances in O2, based on magnetometer measurements at both the LIGO Hanford and LIGO Livingston observatories. We find that correlated noise is well below the O2 sensitivity.",
author = "{The LIGO Scientific Collaboration} and {The Virgo Collaboration} and B. P. Abbott and R. Abbott and T. D. Abbott and S. Abraham and F. Acernese and K. Ackley and C. Adams and V. B. Adya and C. Affeldt and M. Agathos and K. Agatsuma and N. Aggarwal and O. D. Aguiar and L. Aiello and A. Ain and P. Ajith and G. Allen and A. Allocca and M. A. Aloy and P. A. Altin and A. Amato and A. Ananyeva and S. B. Anderson and W. G. Anderson and S. V. Angelova and S. Antier and S. Appert and K. Arai and M. C. Araya and J. S. Areeda and M. Ar{\`e}ne and N. Arnaud and K. G. Arun and S. Ascenzi and G. Ashton and S. M. Aston and P. Astone and F. Aubin and P. Aufmuth and S. L. Danilishin and K. Danzmann and M. Heurs and A. Hreibi and H. L{\"u}ck and D. Steinmeyer and H. Vahlbruch and L.-w. Wei and D. M. Wilken and B. Willke and H. Wittel and Sukanta Bose and Brown, {D. D.} and Chen, {Y. B.} and Manuela Hanke and J. Hennig and Sanjeev Kumar and Lang, {R. N.} and Lee, {H. K.} and Lee, {H. M.} and Lee, {H. W.} and J. Lee and X. Li and Sanders, {J. R.} and Patricia Schmidt and L. Sun and Wang, {Y. F.} and Wu, {D. S.} and L. Zhang and Zhu, {X. J.} and Minchuan Zhou and Gerald Bergmann and Aparna Bisht and Nina Bode and P. Booker and T. Dent and S. Doravari and Marc Brinkmann and M. Cabero and {de Varona}, O. and S. Hochheim and J. Junker and Stefan Kaufer and R. Kirchhoff and Patrick Koch and N. Koper and K{\"o}hlenbeck, {S. M.} and Volker Kringel and G. Kuehn and S. Leavey and J. Lehmann and James Lough and Karvinen, {Kai S.} and S. Khan and Moritz Mehmet and Arunava Mukherjee and Nikhil Mukund and M. Nery and F. Ohme and P. Oppermann and Emil Schreiber and Schulte, {B. W.} and A. R{\"u}diger and M. Phelps and O. Puncken and Y. Setyawati and M. Standke and Fabian Thies and M. Steinke and Michael Weinert and F. Wellmann and Peter We{\ss}els and Wimmer, {Maximilian H.} and W. Winkler and J. Woehler",
note = "Funding information: The authors gratefully acknowledge the support of the United States National Science Foundation (NSF) for the construction and operation of the LIGO Laboratory and Advanced LIGO as well as the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS), and the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research for the construction and operation of the Virgo detector and the creation and support of the European Gravitational Observatory (EGO) consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, the Department of Science and Technology, India; the Science & Engineering Research Board, India; the Ministry of Human Resource Development, India; the Spanish Agencia Estatal de Investigaci{\'o}n; the Vicepresid{\`e}ncia i Conselleria d{\textquoteright}Innovaci{\'o}; Recerca i Turisme and the Conselleria d{\textquoteright}Educaci{\'o} i Universitat del Govern de les Illes Balears; the Conselleria d{\textquoteright}Educaci{\'o}, Investigaci{\'o}, Cultura i Esport de la Generalitat Valenciana; the National Science Centre of Poland; the Swiss National Science Foundation; the Russian Foundation for Basic Research; the Russian Science Foundation; the European Commission; the European Regional Development Funds; the Royal Society; the Scottish Funding Council; the Scottish Universities Physics Alliance; the Hungarian Scientific Research Fund; the Lyon Institute of Origins; the Paris {\^I}le-de-France Region; the National Research, Development and Innovation Office, Hungary; the National Research Foundation of Korea; Industry Canada and the Province of Ontario through the Ministry of Economic Development and Innovation; the Natural Science and Engineering Research Council Canada; the Canadian Institute for Advanced Research; the Brazilian Ministry of Science, Technology, Innovations, and Communications; the International Center for Theoretical Physics South American Institute for Fundamental Research; the Research Grants Council of Hong Kong; the National Natural Science Foundation of China; the Leverhulme Trust, the Research Corporation; the Ministry of Science and Technology, Taiwan; and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, MPS, INFN, CNRS, and the State of Niedersachsen/Germany for provision of computational resources. This article has been assigned the document number LIGO-P1800258.",
year = "2019",
month = sep,
day = "4",
doi = "10.1103/PhysRevD.100.061101",
language = "English",
volume = "100",
journal = "Physical Review D",
issn = "2470-0010",
publisher = "American Institute of Physics",
number = "6",

}

Download

TY - JOUR

T1 - Search for the isotropic stochastic background using data from Advanced LIGO’s second observing run

AU - The LIGO Scientific Collaboration

AU - The Virgo Collaboration

AU - Abbott, B. P.

AU - Abbott, R.

AU - Abbott, T. D.

AU - Abraham, S.

AU - Acernese, F.

AU - Ackley, K.

AU - Adams, C.

AU - Adya, V. B.

AU - Affeldt, C.

AU - Agathos, M.

AU - Agatsuma, K.

AU - Aggarwal, N.

AU - Aguiar, O. D.

AU - Aiello, L.

AU - Ain, A.

AU - Ajith, P.

AU - Allen, G.

AU - Allocca, A.

AU - Aloy, M. A.

AU - Altin, P. A.

AU - Amato, A.

AU - Ananyeva, A.

AU - Anderson, S. B.

AU - Anderson, W. G.

AU - Angelova, S. V.

AU - Antier, S.

AU - Appert, S.

AU - Arai, K.

AU - Araya, M. C.

AU - Areeda, J. S.

AU - Arène, M.

AU - Arnaud, N.

AU - Arun, K. G.

AU - Ascenzi, S.

AU - Ashton, G.

AU - Aston, S. M.

AU - Astone, P.

AU - Aubin, F.

AU - Aufmuth, P.

AU - Danilishin, S. L.

AU - Danzmann, K.

AU - Heurs, M.

AU - Hreibi, A.

AU - Lück, H.

AU - Steinmeyer, D.

AU - Vahlbruch, H.

AU - Wei, L.-w.

AU - Wilken, D. M.

AU - Willke, B.

AU - Wittel, H.

AU - Bose, Sukanta

AU - Brown, D. D.

AU - Chen, Y. B.

AU - Hanke, Manuela

AU - Hennig, J.

AU - Kumar, Sanjeev

AU - Lang, R. N.

AU - Lee, H. K.

AU - Lee, H. M.

AU - Lee, H. W.

AU - Lee, J.

AU - Li, X.

AU - Sanders, J. R.

AU - Schmidt, Patricia

AU - Sun, L.

AU - Wang, Y. F.

AU - Wu, D. S.

AU - Zhang, L.

AU - Zhu, X. J.

AU - Zhou, Minchuan

AU - Bergmann, Gerald

AU - Bisht, Aparna

AU - Bode, Nina

AU - Booker, P.

AU - Dent, T.

AU - Doravari, S.

AU - Brinkmann, Marc

AU - Cabero, M.

AU - de Varona, O.

AU - Hochheim, S.

AU - Junker, J.

AU - Kaufer, Stefan

AU - Kirchhoff, R.

AU - Koch, Patrick

AU - Koper, N.

AU - Köhlenbeck, S. M.

AU - Kringel, Volker

AU - Kuehn, G.

AU - Leavey, S.

AU - Lehmann, J.

AU - Lough, James

AU - Karvinen, Kai S.

AU - Khan, S.

AU - Mehmet, Moritz

AU - Mukherjee, Arunava

AU - Mukund, Nikhil

AU - Nery, M.

AU - Ohme, F.

AU - Oppermann, P.

AU - Schreiber, Emil

AU - Schulte, B. W.

AU - Rüdiger, A.

AU - Phelps, M.

AU - Puncken, O.

AU - Setyawati, Y.

AU - Standke, M.

AU - Thies, Fabian

AU - Steinke, M.

AU - Weinert, Michael

AU - Wellmann, F.

AU - Weßels, Peter

AU - Wimmer, Maximilian H.

AU - Winkler, W.

AU - Woehler, J.

N1 - Funding information: The authors gratefully acknowledge the support of the United States National Science Foundation (NSF) for the construction and operation of the LIGO Laboratory and Advanced LIGO as well as the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS), and the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research for the construction and operation of the Virgo detector and the creation and support of the European Gravitational Observatory (EGO) consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, the Department of Science and Technology, India; the Science & Engineering Research Board, India; the Ministry of Human Resource Development, India; the Spanish Agencia Estatal de Investigación; the Vicepresidència i Conselleria d’Innovació; Recerca i Turisme and the Conselleria d’Educació i Universitat del Govern de les Illes Balears; the Conselleria d’Educació, Investigació, Cultura i Esport de la Generalitat Valenciana; the National Science Centre of Poland; the Swiss National Science Foundation; the Russian Foundation for Basic Research; the Russian Science Foundation; the European Commission; the European Regional Development Funds; the Royal Society; the Scottish Funding Council; the Scottish Universities Physics Alliance; the Hungarian Scientific Research Fund; the Lyon Institute of Origins; the Paris Île-de-France Region; the National Research, Development and Innovation Office, Hungary; the National Research Foundation of Korea; Industry Canada and the Province of Ontario through the Ministry of Economic Development and Innovation; the Natural Science and Engineering Research Council Canada; the Canadian Institute for Advanced Research; the Brazilian Ministry of Science, Technology, Innovations, and Communications; the International Center for Theoretical Physics South American Institute for Fundamental Research; the Research Grants Council of Hong Kong; the National Natural Science Foundation of China; the Leverhulme Trust, the Research Corporation; the Ministry of Science and Technology, Taiwan; and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, MPS, INFN, CNRS, and the State of Niedersachsen/Germany for provision of computational resources. This article has been assigned the document number LIGO-P1800258.

PY - 2019/9/4

Y1 - 2019/9/4

N2 - The stochastic gravitational-wave background is a superposition of sources that are either too weak or too numerous to detect individually. In this study, we present the results from a cross-correlation analysis on data from Advanced LIGO's second observing run (O2), which we combine with the results of the first observing run (O1). We do not find evidence for a stochastic background, so we place upper limits on the normalized energy density in gravitational waves at the 95% credible level of ωGW<6.0×10-8 for a frequency-independent (flat) background and ωGW<4.8×10-8 at 25 Hz for a background of compact binary coalescences. The upper limit improves over the O1 result by a factor of 2.8. Additionally, we place upper limits on the energy density in an isotropic background of scalar- and vector-polarized gravitational waves, and we discuss the implication of these results for models of compact binaries and cosmic string backgrounds. Finally, we present a conservative estimate of the correlated broadband noise due to the magnetic Schumann resonances in O2, based on magnetometer measurements at both the LIGO Hanford and LIGO Livingston observatories. We find that correlated noise is well below the O2 sensitivity.

AB - The stochastic gravitational-wave background is a superposition of sources that are either too weak or too numerous to detect individually. In this study, we present the results from a cross-correlation analysis on data from Advanced LIGO's second observing run (O2), which we combine with the results of the first observing run (O1). We do not find evidence for a stochastic background, so we place upper limits on the normalized energy density in gravitational waves at the 95% credible level of ωGW<6.0×10-8 for a frequency-independent (flat) background and ωGW<4.8×10-8 at 25 Hz for a background of compact binary coalescences. The upper limit improves over the O1 result by a factor of 2.8. Additionally, we place upper limits on the energy density in an isotropic background of scalar- and vector-polarized gravitational waves, and we discuss the implication of these results for models of compact binaries and cosmic string backgrounds. Finally, we present a conservative estimate of the correlated broadband noise due to the magnetic Schumann resonances in O2, based on magnetometer measurements at both the LIGO Hanford and LIGO Livingston observatories. We find that correlated noise is well below the O2 sensitivity.

UR - http://www.scopus.com/inward/record.url?scp=85072995802&partnerID=8YFLogxK

U2 - 10.1103/PhysRevD.100.061101

DO - 10.1103/PhysRevD.100.061101

M3 - Article

VL - 100

JO - Physical Review D

JF - Physical Review D

SN - 2470-0010

IS - 6

M1 - 061101

ER -

Von denselben Autoren