Search for Subsolar-Mass Binaries in the First Half of Advanced LIGO's and Advanced Virgo's Third Observing Run

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autorschaft

  • The LIGO Scientific Collaboration
  • Virgo Collaboration
  • C. Affeldt
  • K. Danzmann
  • M. Heurs
  • A. Hreibi
  • J. Junker
  • H. Lück
  • B. W. Schulte
  • H. Vahlbruch
  • D. Wilken
  • B. Willke
  • Fabio Bergamin
  • Aparna Bisht
  • Nina Bode
  • Phillip Booker
  • Marc Brinkmann
  • N. Gohlke
  • A. Heidt
  • J. Heinze
  • S. Hochheim
  • Wolfgang Kastaun
  • R. Kirchhoff
  • Patrick Koch
  • N. Koper
  • Volker Kringel
  • N. V. Krishnendu
  • G. Kuehn
  • S. Leavey
  • J. Lehmann
  • Kang Liu
  • James Lough
  • Mariia Matiushechkina
  • Moritz Mehmet
  • Fabian Meylahn
  • Nikhil Mukund
  • S. L. Nadji
  • M. Nery
  • F. Ohme
  • M. Schneewind
  • B. F. Schutz
  • J. Venneberg
  • J. von Wrangel
  • Michael Weinert
  • F. Wellmann
  • Peter Weßels
  • W. Winkler
  • J. Woehler
  • D. S. Wu

Organisationseinheiten

Externe Organisationen

  • California Institute of Technology (Caltech)
  • Louisiana State University
  • Universita di Salerno
  • Università degli Studi di Napoli Federico II
  • Monash University
  • University of Wisconsin Milwaukee
  • Australian National University
  • Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)
  • Inter-University Centre for Astronomy and Astrophysics India
  • University of Cambridge
  • Friedrich-Schiller-Universität Jena
  • University of Birmingham
  • Northwestern University
  • Instituto Nacional de Pesquisas Espaciais
  • Cardiff University
  • Sezione di Pisa
  • Tata Institute of Fundamental Research (TIFR HYD)
  • Istituto Nazionale di Fisica Nucleare (INFN)
  • Université Claude Bernard Lyon 1
  • Universitat de Barcelona (UB)
  • Université Grenoble Alpes (UGA)
  • Gran Sasso Science Institute
  • University of Strathclyde
  • University of Udine
  • Embry Riddle Aeronautical University
  • Université de Paris
  • California State University Fullerton
  • Universität Paris-Saclay
  • European Gravitational Observatory (EGO)
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Aufsatznummer061104
FachzeitschriftPhysical review letters
Jahrgang129
Ausgabenummer6
PublikationsstatusVeröffentlicht - 5 Aug. 2022

Abstract

We report on a search for compact binary coalescences where at least one binary component has a mass between 0.2 \(M_\odot\) and 1.0 \(M_\odot\) in Advanced LIGO and Advanced Virgo data collected between 1 April 2019 1500 UTC and 1 October 2019 1500 UTC. We extend previous analyses in two main ways: we include data from the Virgo detector and we allow for more unequal mass systems, with mass ratio \(q \geq 0.1\). We do not report any gravitational-wave candidates. The most significant trigger has a false alarm rate of 0.14 \(\mathrm{yr}^{-1}\). This implies an upper limit on the merger rate of subsolar binaries in the range \([220-24200] \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}\), depending on the chirp mass of the binary. We use this upper limit to derive astrophysical constraints on two phenomenological models that could produce subsolar-mass compact objects. One is an isotropic distribution of equal-mass primordial black holes. Using this model, we find that the fraction of dark matter in primordial black holes is \(f_\mathrm{PBH} \equiv \Omega_\mathrm{PBH} / \Omega_\mathrm{DM} \lesssim 6\%\). The other is a dissipative dark matter model, in which fermionic dark matter can collapse and form black holes. The upper limit on the fraction of dark matter black holes depends on the minimum mass of the black holes that can be formed: the most constraining result is obtained at \(M_\mathrm{min}=1 M_\odot\), where \(f_\mathrm{DBH} \equiv \Omega_\mathrm{PBH} / \Omega_\mathrm{DM} \lesssim 0.003\%\). These are the tightest limits on spinning subsolar-mass binaries to date.

ASJC Scopus Sachgebiete

Zitieren

Search for Subsolar-Mass Binaries in the First Half of Advanced LIGO's and Advanced Virgo's Third Observing Run. / The LIGO Scientific Collaboration; Virgo Collaboration; Affeldt, C. et al.
in: Physical review letters, Jahrgang 129, Nr. 6, 061104, 05.08.2022.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

The LIGO Scientific Collaboration, Virgo Collaboration, Affeldt, C, Danzmann, K, Heurs, M, Hreibi, A, Junker, J, Lück, H, Schulte, BW, Vahlbruch, H, Wilken, D, Willke, B, Bergamin, F, Bisht, A, Bode, N, Booker, P, Brinkmann, M, Gohlke, N, Heidt, A, Heinze, J, Hochheim, S, Kastaun, W, Kirchhoff, R, Koch, P, Koper, N, Kringel, V, Krishnendu, NV, Kuehn, G, Leavey, S, Lehmann, J, Liu, K, Lough, J, Matiushechkina, M, Mehmet, M, Meylahn, F, Mukund, N, Nadji, SL, Nery, M, Ohme, F, Schneewind, M, Schutz, BF, Venneberg, J, von Wrangel, J, Weinert, M, Wellmann, F, Weßels, P, Winkler, W, Woehler, J & Wu, DS 2022, 'Search for Subsolar-Mass Binaries in the First Half of Advanced LIGO's and Advanced Virgo's Third Observing Run', Physical review letters, Jg. 129, Nr. 6, 061104. https://doi.org/10.1103/PhysRevLett.129.061104
The LIGO Scientific Collaboration, Virgo Collaboration, Affeldt, C., Danzmann, K., Heurs, M., Hreibi, A., Junker, J., Lück, H., Schulte, B. W., Vahlbruch, H., Wilken, D., Willke, B., Bergamin, F., Bisht, A., Bode, N., Booker, P., Brinkmann, M., Gohlke, N., Heidt, A., ... Wu, D. S. (2022). Search for Subsolar-Mass Binaries in the First Half of Advanced LIGO's and Advanced Virgo's Third Observing Run. Physical review letters, 129(6), Artikel 061104. https://doi.org/10.1103/PhysRevLett.129.061104
The LIGO Scientific Collaboration, Virgo Collaboration, Affeldt C, Danzmann K, Heurs M, Hreibi A et al. Search for Subsolar-Mass Binaries in the First Half of Advanced LIGO's and Advanced Virgo's Third Observing Run. Physical review letters. 2022 Aug 5;129(6):061104. doi: 10.1103/PhysRevLett.129.061104
The LIGO Scientific Collaboration ; Virgo Collaboration ; Affeldt, C. et al. / Search for Subsolar-Mass Binaries in the First Half of Advanced LIGO's and Advanced Virgo's Third Observing Run. in: Physical review letters. 2022 ; Jahrgang 129, Nr. 6.
Download
@article{f86ebdb1a2ac4900b2687ec884534a9b,
title = "Search for Subsolar-Mass Binaries in the First Half of Advanced LIGO's and Advanced Virgo's Third Observing Run",
abstract = " We report on a search for compact binary coalescences where at least one binary component has a mass between 0.2 \(M_\odot\) and 1.0 \(M_\odot\) in Advanced LIGO and Advanced Virgo data collected between 1 April 2019 1500 UTC and 1 October 2019 1500 UTC. We extend previous analyses in two main ways: we include data from the Virgo detector and we allow for more unequal mass systems, with mass ratio \(q \geq 0.1\). We do not report any gravitational-wave candidates. The most significant trigger has a false alarm rate of 0.14 \(\mathrm{yr}^{-1}\). This implies an upper limit on the merger rate of subsolar binaries in the range \([220-24200] \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}\), depending on the chirp mass of the binary. We use this upper limit to derive astrophysical constraints on two phenomenological models that could produce subsolar-mass compact objects. One is an isotropic distribution of equal-mass primordial black holes. Using this model, we find that the fraction of dark matter in primordial black holes is \(f_\mathrm{PBH} \equiv \Omega_\mathrm{PBH} / \Omega_\mathrm{DM} \lesssim 6\%\). The other is a dissipative dark matter model, in which fermionic dark matter can collapse and form black holes. The upper limit on the fraction of dark matter black holes depends on the minimum mass of the black holes that can be formed: the most constraining result is obtained at \(M_\mathrm{min}=1 M_\odot\), where \(f_\mathrm{DBH} \equiv \Omega_\mathrm{PBH} / \Omega_\mathrm{DM} \lesssim 0.003\%\). These are the tightest limits on spinning subsolar-mass binaries to date. ",
keywords = "astro-ph.CO, astro-ph.HE, gr-qc",
author = "{The LIGO Scientific Collaboration} and {The Virgo Collaboration} and R. Abbott and Abbott, {T. D.} and F. Acernese and K. Ackley and C. Adams and N. Adhikari and Adhikari, {R. X.} and Adya, {V. B.} and C. Affeldt and D. Agarwal and M. Agathos and K. Agatsuma and N. Aggarwal and Aguiar, {O. D.} and L. Aiello and A. Ain and P. Ajith and S. Albanesi and A. Allocca and Altin, {P. A.} and A. Amato and C. Anand and S. Anand and A. Ananyeva and Anderson, {S. B.} and Anderson, {W. G.} and T. Andrade and N. Andres and T. Andri{\'c} and Angelova, {S. V.} and S. Ansoldi and Antelis, {J. M.} and S. Antier and S. Appert and K. Arai and Araya, {M. C.} and Areeda, {J. S.} and M. Ar{\`e}ne and N. Arnaud and Aronson, {S. M.} and K. Danzmann and M. Heurs and A. Hreibi and J. Junker and H. L{\"u}ck and Schulte, {B. W.} and H. Vahlbruch and D. Wilken and B. Willke and Z. Zhou and Fabio Bergamin and Aparna Bisht and Nina Bode and Phillip Booker and Marc Brinkmann and N. Gohlke and A. Heidt and J. Heinze and S. Hochheim and Wolfgang Kastaun and R. Kirchhoff and Patrick Koch and N. Koper and Volker Kringel and Krishnendu, {N. V.} and G. Kuehn and S. Leavey and J. Lehmann and Kang Liu and James Lough and Mariia Matiushechkina and Moritz Mehmet and Fabian Meylahn and Nikhil Mukund and Nadji, {S. L.} and M. Nery and F. Ohme and M. Schneewind and Schutz, {B. F.} and J. Venneberg and {von Wrangel}, J. and Michael Weinert and F. Wellmann and Peter We{\ss}els and W. Winkler and J. Woehler and Wu, {D. S.}",
note = "Publisher Copyright: {\textcopyright} 2022 American Physical Society.",
year = "2022",
month = aug,
day = "5",
doi = "10.1103/PhysRevLett.129.061104",
language = "English",
volume = "129",
journal = "Physical review letters",
issn = "0031-9007",
publisher = "American Physical Society",
number = "6",

}

Download

TY - JOUR

T1 - Search for Subsolar-Mass Binaries in the First Half of Advanced LIGO's and Advanced Virgo's Third Observing Run

AU - The LIGO Scientific Collaboration

AU - The Virgo Collaboration

AU - Abbott, R.

AU - Abbott, T. D.

AU - Acernese, F.

AU - Ackley, K.

AU - Adams, C.

AU - Adhikari, N.

AU - Adhikari, R. X.

AU - Adya, V. B.

AU - Affeldt, C.

AU - Agarwal, D.

AU - Agathos, M.

AU - Agatsuma, K.

AU - Aggarwal, N.

AU - Aguiar, O. D.

AU - Aiello, L.

AU - Ain, A.

AU - Ajith, P.

AU - Albanesi, S.

AU - Allocca, A.

AU - Altin, P. A.

AU - Amato, A.

AU - Anand, C.

AU - Anand, S.

AU - Ananyeva, A.

AU - Anderson, S. B.

AU - Anderson, W. G.

AU - Andrade, T.

AU - Andres, N.

AU - Andrić, T.

AU - Angelova, S. V.

AU - Ansoldi, S.

AU - Antelis, J. M.

AU - Antier, S.

AU - Appert, S.

AU - Arai, K.

AU - Araya, M. C.

AU - Areeda, J. S.

AU - Arène, M.

AU - Arnaud, N.

AU - Aronson, S. M.

AU - Danzmann, K.

AU - Heurs, M.

AU - Hreibi, A.

AU - Junker, J.

AU - Lück, H.

AU - Schulte, B. W.

AU - Vahlbruch, H.

AU - Wilken, D.

AU - Willke, B.

AU - Zhou, Z.

AU - Bergamin, Fabio

AU - Bisht, Aparna

AU - Bode, Nina

AU - Booker, Phillip

AU - Brinkmann, Marc

AU - Gohlke, N.

AU - Heidt, A.

AU - Heinze, J.

AU - Hochheim, S.

AU - Kastaun, Wolfgang

AU - Kirchhoff, R.

AU - Koch, Patrick

AU - Koper, N.

AU - Kringel, Volker

AU - Krishnendu, N. V.

AU - Kuehn, G.

AU - Leavey, S.

AU - Lehmann, J.

AU - Liu, Kang

AU - Lough, James

AU - Matiushechkina, Mariia

AU - Mehmet, Moritz

AU - Meylahn, Fabian

AU - Mukund, Nikhil

AU - Nadji, S. L.

AU - Nery, M.

AU - Ohme, F.

AU - Schneewind, M.

AU - Schutz, B. F.

AU - Venneberg, J.

AU - von Wrangel, J.

AU - Weinert, Michael

AU - Wellmann, F.

AU - Weßels, Peter

AU - Winkler, W.

AU - Woehler, J.

AU - Wu, D. S.

N1 - Publisher Copyright: © 2022 American Physical Society.

PY - 2022/8/5

Y1 - 2022/8/5

N2 - We report on a search for compact binary coalescences where at least one binary component has a mass between 0.2 \(M_\odot\) and 1.0 \(M_\odot\) in Advanced LIGO and Advanced Virgo data collected between 1 April 2019 1500 UTC and 1 October 2019 1500 UTC. We extend previous analyses in two main ways: we include data from the Virgo detector and we allow for more unequal mass systems, with mass ratio \(q \geq 0.1\). We do not report any gravitational-wave candidates. The most significant trigger has a false alarm rate of 0.14 \(\mathrm{yr}^{-1}\). This implies an upper limit on the merger rate of subsolar binaries in the range \([220-24200] \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}\), depending on the chirp mass of the binary. We use this upper limit to derive astrophysical constraints on two phenomenological models that could produce subsolar-mass compact objects. One is an isotropic distribution of equal-mass primordial black holes. Using this model, we find that the fraction of dark matter in primordial black holes is \(f_\mathrm{PBH} \equiv \Omega_\mathrm{PBH} / \Omega_\mathrm{DM} \lesssim 6\%\). The other is a dissipative dark matter model, in which fermionic dark matter can collapse and form black holes. The upper limit on the fraction of dark matter black holes depends on the minimum mass of the black holes that can be formed: the most constraining result is obtained at \(M_\mathrm{min}=1 M_\odot\), where \(f_\mathrm{DBH} \equiv \Omega_\mathrm{PBH} / \Omega_\mathrm{DM} \lesssim 0.003\%\). These are the tightest limits on spinning subsolar-mass binaries to date.

AB - We report on a search for compact binary coalescences where at least one binary component has a mass between 0.2 \(M_\odot\) and 1.0 \(M_\odot\) in Advanced LIGO and Advanced Virgo data collected between 1 April 2019 1500 UTC and 1 October 2019 1500 UTC. We extend previous analyses in two main ways: we include data from the Virgo detector and we allow for more unequal mass systems, with mass ratio \(q \geq 0.1\). We do not report any gravitational-wave candidates. The most significant trigger has a false alarm rate of 0.14 \(\mathrm{yr}^{-1}\). This implies an upper limit on the merger rate of subsolar binaries in the range \([220-24200] \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}\), depending on the chirp mass of the binary. We use this upper limit to derive astrophysical constraints on two phenomenological models that could produce subsolar-mass compact objects. One is an isotropic distribution of equal-mass primordial black holes. Using this model, we find that the fraction of dark matter in primordial black holes is \(f_\mathrm{PBH} \equiv \Omega_\mathrm{PBH} / \Omega_\mathrm{DM} \lesssim 6\%\). The other is a dissipative dark matter model, in which fermionic dark matter can collapse and form black holes. The upper limit on the fraction of dark matter black holes depends on the minimum mass of the black holes that can be formed: the most constraining result is obtained at \(M_\mathrm{min}=1 M_\odot\), where \(f_\mathrm{DBH} \equiv \Omega_\mathrm{PBH} / \Omega_\mathrm{DM} \lesssim 0.003\%\). These are the tightest limits on spinning subsolar-mass binaries to date.

KW - astro-ph.CO

KW - astro-ph.HE

KW - gr-qc

UR - http://www.scopus.com/inward/record.url?scp=85136500034&partnerID=8YFLogxK

U2 - 10.1103/PhysRevLett.129.061104

DO - 10.1103/PhysRevLett.129.061104

M3 - Article

C2 - 36018635

VL - 129

JO - Physical review letters

JF - Physical review letters

SN - 0031-9007

IS - 6

M1 - 061104

ER -

Von denselben Autoren