Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 161102 |
Seitenumfang | 13 |
Fachzeitschrift | Physical review letters |
Jahrgang | 123 |
Ausgabenummer | 16 |
Publikationsstatus | Veröffentlicht - 18 Okt. 2019 |
Abstract
We present a search for subsolar mass ultracompact objects in data obtained during Advanced LIGO's second observing run. In contrast to a previous search of Advanced LIGO data from the first observing run, this search includes the effects of component spin on the gravitational waveform. We identify no viable gravitational-wave candidates consistent with subsolar mass ultracompact binaries with at least one component between 0.2 Ma-1.0 Ma. We use the null result to constrain the binary merger rate of (0.2 M, 0.2 M) binaries to be less than 3.7×105 Gpc-3 yr-1 and the binary merger rate of (1.0 M, 1.0 M) binaries to be less than 5.2×103 Gpc-3 yr-1. Subsolar mass ultracompact objects are not expected to form via known stellar evolution channels, though it has been suggested that primordial density fluctuations or particle dark matter with cooling mechanisms and/or nuclear interactions could form black holes with subsolar masses. Assuming a particular primordial black hole (PBH) formation model, we constrain a population of merging 0.2 M black holes to account for less than 16% of the dark matter density and a population of merging 1.0 M black holes to account for less than 2% of the dark matter density. We discuss how constraints on the merger rate and dark matter fraction may be extended to arbitrary black hole population models that predict subsolar mass binaries.
ASJC Scopus Sachgebiete
- Physik und Astronomie (insg.)
- Allgemeine Physik und Astronomie
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Physical review letters, Jahrgang 123, Nr. 16, 161102, 18.10.2019.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Search for Subsolar Mass Ultracompact Binaries in Advanced LIGO's Second Observing Run
AU - The LIGO Scientific Collaboration
AU - The Virgo Collaboration
AU - Abbott, B P
AU - Abbott, R
AU - Abbott, T D
AU - Abraham, S
AU - Acernese, F
AU - Ackley, K
AU - Adams, C
AU - Adhikari, R X
AU - Adya, V B
AU - Affeldt, Christoph
AU - Agathos, M
AU - Agatsuma, K
AU - Aggarwal, N
AU - Aguiar, O D
AU - Aiello, L
AU - Ain, A
AU - Ajith, P
AU - Allen, G
AU - Allocca, A
AU - Aloy, M A
AU - Bose, S
AU - Brown, D D
AU - Chen, Y
AU - Cheng, H-P
AU - Danilishin, Shtefan
AU - Danzmann, Karsten
AU - Gniesmer, J
AU - Hanke, Manuela
AU - Hennig, J
AU - Heurs, Michele
AU - Lee, H W
AU - Li, X
AU - Lück, H
AU - Schmidt, P
AU - Steinmeyer, Daniel
AU - Sun, L
AU - Vahlbruch, Henning Fedor Cornelius
AU - Wang, Y F
AU - Wei, Li-Wei
AU - Wilken, Dennis Max
AU - Willke, Benno
AU - Wittel, Holger
AU - Zhang, L
AU - Zhou, M
AU - Aufmuth, Peter
AU - Bergmann, Gerald
AU - Bisht, A.
AU - Bode, N.
AU - Booker, P.
AU - Brinkmann, M.
AU - Cabero, M.
AU - de Varona, O.
AU - Hübner, M. T.
AU - Kaufer, Stefan
AU - Junker, J.
AU - Khan, S.
AU - Rose, C. A.
AU - Kirchhoff, R.
AU - Koch, P.
AU - Köhlenbeck, S. M.
AU - Koper, N.
AU - Krämer, Christina
AU - Kringel, V.
AU - Kuehn, G.
AU - Leavey, S.
AU - Lehmann, J.
AU - Lough, J. D.
AU - Mehmet, M.
AU - Meylahn, F.
AU - Mukherjee, Arunava
AU - Mukund, N.
AU - Nery, M.
AU - Ohme, F.
AU - Oppermann, P.
AU - Phelps, M.
AU - Rüdiger, A.
AU - Schreiber, E.
AU - Schulte, B. W.
AU - Setyawati, Y.
AU - Standke, M.
AU - Steinke, Michael
AU - Weinert, M.
AU - Wellmann, F.
AU - Weißels, P.
AU - Woehler, J.
AU - Wu, D. S.
AU - Hochheim, S.
AU - Winkler, W.
N1 - Publisher Copyright: © 2019 American Physical Society.
PY - 2019/10/18
Y1 - 2019/10/18
N2 - We present a search for subsolar mass ultracompact objects in data obtained during Advanced LIGO's second observing run. In contrast to a previous search of Advanced LIGO data from the first observing run, this search includes the effects of component spin on the gravitational waveform. We identify no viable gravitational-wave candidates consistent with subsolar mass ultracompact binaries with at least one component between 0.2 Ma-1.0 Ma. We use the null result to constrain the binary merger rate of (0.2 M, 0.2 M) binaries to be less than 3.7×105 Gpc-3 yr-1 and the binary merger rate of (1.0 M, 1.0 M) binaries to be less than 5.2×103 Gpc-3 yr-1. Subsolar mass ultracompact objects are not expected to form via known stellar evolution channels, though it has been suggested that primordial density fluctuations or particle dark matter with cooling mechanisms and/or nuclear interactions could form black holes with subsolar masses. Assuming a particular primordial black hole (PBH) formation model, we constrain a population of merging 0.2 M black holes to account for less than 16% of the dark matter density and a population of merging 1.0 M black holes to account for less than 2% of the dark matter density. We discuss how constraints on the merger rate and dark matter fraction may be extended to arbitrary black hole population models that predict subsolar mass binaries.
AB - We present a search for subsolar mass ultracompact objects in data obtained during Advanced LIGO's second observing run. In contrast to a previous search of Advanced LIGO data from the first observing run, this search includes the effects of component spin on the gravitational waveform. We identify no viable gravitational-wave candidates consistent with subsolar mass ultracompact binaries with at least one component between 0.2 Ma-1.0 Ma. We use the null result to constrain the binary merger rate of (0.2 M, 0.2 M) binaries to be less than 3.7×105 Gpc-3 yr-1 and the binary merger rate of (1.0 M, 1.0 M) binaries to be less than 5.2×103 Gpc-3 yr-1. Subsolar mass ultracompact objects are not expected to form via known stellar evolution channels, though it has been suggested that primordial density fluctuations or particle dark matter with cooling mechanisms and/or nuclear interactions could form black holes with subsolar masses. Assuming a particular primordial black hole (PBH) formation model, we constrain a population of merging 0.2 M black holes to account for less than 16% of the dark matter density and a population of merging 1.0 M black holes to account for less than 2% of the dark matter density. We discuss how constraints on the merger rate and dark matter fraction may be extended to arbitrary black hole population models that predict subsolar mass binaries.
UR - http://www.scopus.com/inward/record.url?scp=85073822336&partnerID=8YFLogxK
U2 - 10.1103/PhysRevLett.123.161102
DO - 10.1103/PhysRevLett.123.161102
M3 - Article
C2 - 31702344
VL - 123
JO - Physical review letters
JF - Physical review letters
SN - 0031-9007
IS - 16
M1 - 161102
ER -