Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 160 |
Seitenumfang | 19 |
Fachzeitschrift | Astrophysical Journal |
Jahrgang | 875 |
Ausgabenummer | 2 |
Publikationsstatus | Veröffentlicht - 25 Apr. 2019 |
Abstract
One unanswered question about the binary neutron star coalescence GW170817 is the nature of its post-merger remnant. A previous search for post-merger gravitational waves targeted high-frequency signals from a possible neutron star remnant with a maximum signal duration of 500 s. Here, we revisit the neutron star remnant scenario and focus on longer signal durations, up until the end of the second Advanced LIGO-Virgo observing run, which was 8.5 days after the coalescence of GW170817. The main physical scenario for this emission is the power-law spindown of a massive magnetar-like remnant. We use four independent search algorithms with varying degrees of restrictiveness on the signal waveform and different ways of dealing with noise artefacts. In agreement with theoretical estimates, we find no significant signal candidates. Through simulated signals, we quantify that with the current detector sensitivity, nowhere in the studied parameter space are we sensitive to a signal from more than 1 Mpc away, compared to the actual distance of 40 Mpc. However, this study serves as a prototype for post-merger analyses in future observing runs with expected higher sensitivity.
ASJC Scopus Sachgebiete
- Physik und Astronomie (insg.)
- Astronomie und Astrophysik
- Erdkunde und Planetologie (insg.)
- Astronomie und Planetologie
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Astrophysical Journal, Jahrgang 875, Nr. 2, 160, 25.04.2019.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Search for Gravitational Waves from a Long-lived Remnant of the Binary Neutron Star Merger GW170817
AU - The LIGO Scientific Collaboration
AU - The Virgo Collaboration
AU - Abbott, B. P.
AU - Abbott, R.
AU - Abbott, T. D.
AU - Acernese, F.
AU - Ackley, K.
AU - Adams, C.
AU - Adams, T.
AU - Addesso, P.
AU - Adhikari, R. X.
AU - Adya, V. B.
AU - Affeldt, C.
AU - Agarwal, B.
AU - Agathos, M.
AU - Agatsuma, K.
AU - Aggarwal, N.
AU - Aguiar, O. D.
AU - Aiello, L.
AU - Ain, A.
AU - Ajith, P.
AU - Allen, B.
AU - Allen, G.
AU - Allocca, A.
AU - Aloy, M. A.
AU - Altin, P. A.
AU - Amato, A.
AU - Ananyeva, A.
AU - Anderson, S. B.
AU - Anderson, W. G.
AU - Angelova, S. V.
AU - Antier, S.
AU - Appert, S.
AU - Arai, K.
AU - Araya, M. C.
AU - Areeda, J. S.
AU - Arène, M.
AU - Arnaud, N.
AU - Ascenzi, S.
AU - Ashton, G.
AU - Ast, M.
AU - Danilishin, S. L.
AU - Danzmann, K.
AU - Heurs, M.
AU - Hreibi, A.
AU - Lück, H.
AU - Steinmeyer, D.
AU - Vahlbruch, H.
AU - Wei, L.-w.
AU - Wilken, D.
AU - Willke, B.
AU - Wittel, H.
AU - Bensch, Maximilian
AU - Bose, Sukanta
AU - Brown, D. D.
AU - Chen, Y. B.
AU - Hanke, Manuela
AU - Hennig, J.
AU - Lang, R. N.
AU - Lee, H. K.
AU - Lee, H. M.
AU - Lee, H. W.
AU - Li, X.
AU - Nguyen, T.
AU - Sanders, J. R.
AU - Schmidt, Patricia
AU - Sun, L.
AU - Wang, Y. F.
AU - Wu, D. S.
AU - Zhang, L.
AU - Zhu, X. J.
AU - Zhou, Minchuan
AU - Bergmann, Gerald
AU - Bisht, Aparna
AU - Bode, Nina
AU - Booker, P.
AU - Brinkmann, Marc
AU - Cabero, M.
AU - Denker, Timo
AU - de Varona, O.
AU - Hochheim, S.
AU - Dent, T.
AU - Doravari, S.
AU - Junker, J.
AU - Kastaun, W.
AU - Kaufer, Stefan
AU - Kirchhoff, R.
AU - Koch, Patrick
AU - Koper, N.
AU - Karvinen, Kai S.
AU - Khan, S.
AU - Koper, N.
AU - Köhlenbeck, S. M.
AU - Kringel, Volker
AU - Kuehn, G.
AU - Leavey, S.
AU - Lehmann, J.
AU - Leonardi, M.
AU - Lough, James
AU - Mehmet, Moritz
AU - Mukherjee, Arunava
AU - Mendoza-Gandara, D.
AU - Nery, M.
AU - Ohme, F.
AU - Oppermann, P.
AU - Schreiber, Emil
AU - Schulte, B. W.
AU - Schütte, Dirk
AU - Singh, Ajeet Singh
AU - Thies, Fabian
AU - Theeg, Thomas
AU - Steltner, B.
AU - Steinke, M.
AU - Setyawati, Y.
AU - Weinert, Michael
AU - Wellmann, F.
AU - Weßels, Peter
AU - Wimmer, Maximilian H.
AU - Winkler, W.
AU - Woehler, J.
AU - Zhu, S. J.
N1 - Funding Information: We gratefully acknowledge financial support from the National Basic Research Program of China (Grant No. 2012CB720500) and NSFC (Grant No. 61320106009).
PY - 2019/4/25
Y1 - 2019/4/25
N2 - One unanswered question about the binary neutron star coalescence GW170817 is the nature of its post-merger remnant. A previous search for post-merger gravitational waves targeted high-frequency signals from a possible neutron star remnant with a maximum signal duration of 500 s. Here, we revisit the neutron star remnant scenario and focus on longer signal durations, up until the end of the second Advanced LIGO-Virgo observing run, which was 8.5 days after the coalescence of GW170817. The main physical scenario for this emission is the power-law spindown of a massive magnetar-like remnant. We use four independent search algorithms with varying degrees of restrictiveness on the signal waveform and different ways of dealing with noise artefacts. In agreement with theoretical estimates, we find no significant signal candidates. Through simulated signals, we quantify that with the current detector sensitivity, nowhere in the studied parameter space are we sensitive to a signal from more than 1 Mpc away, compared to the actual distance of 40 Mpc. However, this study serves as a prototype for post-merger analyses in future observing runs with expected higher sensitivity.
AB - One unanswered question about the binary neutron star coalescence GW170817 is the nature of its post-merger remnant. A previous search for post-merger gravitational waves targeted high-frequency signals from a possible neutron star remnant with a maximum signal duration of 500 s. Here, we revisit the neutron star remnant scenario and focus on longer signal durations, up until the end of the second Advanced LIGO-Virgo observing run, which was 8.5 days after the coalescence of GW170817. The main physical scenario for this emission is the power-law spindown of a massive magnetar-like remnant. We use four independent search algorithms with varying degrees of restrictiveness on the signal waveform and different ways of dealing with noise artefacts. In agreement with theoretical estimates, we find no significant signal candidates. Through simulated signals, we quantify that with the current detector sensitivity, nowhere in the studied parameter space are we sensitive to a signal from more than 1 Mpc away, compared to the actual distance of 40 Mpc. However, this study serves as a prototype for post-merger analyses in future observing runs with expected higher sensitivity.
KW - gravitational waves
KW - methods: data analysis
KW - stars: neutron
UR - http://www.scopus.com/inward/record.url?scp=85066449138&partnerID=8YFLogxK
U2 - 10.48550/arXiv.1810.02581
DO - 10.48550/arXiv.1810.02581
M3 - Article
VL - 875
JO - Astrophysical Journal
JF - Astrophysical Journal
SN - 0004-637X
IS - 2
M1 - 160
ER -