Details
Originalsprache | Englisch |
---|---|
Publikationsstatus | Elektronisch veröffentlicht (E-Pub) - 21 Dez. 2023 |
Abstract
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
2023.
Publikation: Arbeitspapier/Preprint › Preprint
}
TY - UNPB
T1 - Scattering diagrams
T2 - polynomiality and the dense region
AU - Gräfnitz, Tim
AU - Luo, Patrick
N1 - 22 pages, comments welcome
PY - 2023/12/21
Y1 - 2023/12/21
N2 - We use deformations and mutations of scattering diagrams to show that the coefficients of a scattering diagram with initial functions \(f1 = (1+tx)^{\mu}\) and \(f2 = (1+ty)^{\nu}\) are polynomial in \({\mu}\), \({\nu}\) and non-trivial in a certain dense region. We discuss consequences for Gromov-Witten invariants and quiver representations.
AB - We use deformations and mutations of scattering diagrams to show that the coefficients of a scattering diagram with initial functions \(f1 = (1+tx)^{\mu}\) and \(f2 = (1+ty)^{\nu}\) are polynomial in \({\mu}\), \({\nu}\) and non-trivial in a certain dense region. We discuss consequences for Gromov-Witten invariants and quiver representations.
KW - math.AG
U2 - 10.48550/arXiv.2312.13990
DO - 10.48550/arXiv.2312.13990
M3 - Preprint
BT - Scattering diagrams
ER -