Scattering diagrams: polynomiality and the dense region

Publikation: Arbeitspapier/PreprintPreprint

Autoren

  • Tim Gräfnitz
  • Patrick Luo

Organisationseinheiten

Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
PublikationsstatusElektronisch veröffentlicht (E-Pub) - 21 Dez. 2023

Abstract

We use deformations and mutations of scattering diagrams to show that the coefficients of a scattering diagram with initial functions \(f1 = (1+tx)^{\mu}\) and \(f2 = (1+ty)^{\nu}\) are polynomial in \({\mu}\), \({\nu}\) and non-trivial in a certain dense region. We discuss consequences for Gromov-Witten invariants and quiver representations.

Zitieren

Scattering diagrams: polynomiality and the dense region. / Gräfnitz, Tim; Luo, Patrick.
2023.

Publikation: Arbeitspapier/PreprintPreprint

Gräfnitz, T., & Luo, P. (2023). Scattering diagrams: polynomiality and the dense region. Vorabveröffentlichung online. https://doi.org/10.48550/arXiv.2312.13990
Gräfnitz T, Luo P. Scattering diagrams: polynomiality and the dense region. 2023 Dez 21. Epub 2023 Dez 21. doi: 10.48550/arXiv.2312.13990
Gräfnitz, Tim ; Luo, Patrick. / Scattering diagrams : polynomiality and the dense region. 2023.
Download
@techreport{ff4047bcb3754d05be3855cb081f2165,
title = "Scattering diagrams: polynomiality and the dense region",
abstract = " We use deformations and mutations of scattering diagrams to show that the coefficients of a scattering diagram with initial functions \(f1 = (1+tx)^{\mu}\) and \(f2 = (1+ty)^{\nu}\) are polynomial in \({\mu}\), \({\nu}\) and non-trivial in a certain dense region. We discuss consequences for Gromov-Witten invariants and quiver representations. ",
keywords = "math.AG",
author = "Tim Gr{\"a}fnitz and Patrick Luo",
note = "22 pages, comments welcome",
year = "2023",
month = dec,
day = "21",
doi = "10.48550/arXiv.2312.13990",
language = "English",
type = "WorkingPaper",

}

Download

TY - UNPB

T1 - Scattering diagrams

T2 - polynomiality and the dense region

AU - Gräfnitz, Tim

AU - Luo, Patrick

N1 - 22 pages, comments welcome

PY - 2023/12/21

Y1 - 2023/12/21

N2 - We use deformations and mutations of scattering diagrams to show that the coefficients of a scattering diagram with initial functions \(f1 = (1+tx)^{\mu}\) and \(f2 = (1+ty)^{\nu}\) are polynomial in \({\mu}\), \({\nu}\) and non-trivial in a certain dense region. We discuss consequences for Gromov-Witten invariants and quiver representations.

AB - We use deformations and mutations of scattering diagrams to show that the coefficients of a scattering diagram with initial functions \(f1 = (1+tx)^{\mu}\) and \(f2 = (1+ty)^{\nu}\) are polynomial in \({\mu}\), \({\nu}\) and non-trivial in a certain dense region. We discuss consequences for Gromov-Witten invariants and quiver representations.

KW - math.AG

U2 - 10.48550/arXiv.2312.13990

DO - 10.48550/arXiv.2312.13990

M3 - Preprint

BT - Scattering diagrams

ER -