Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | Q05001 |
Fachzeitschrift | Geochemistry, Geophysics, Geosystems |
Jahrgang | 9 |
Ausgabenummer | 5 |
Publikationsstatus | Veröffentlicht - 2 Mai 2008 |
Abstract
In the Oman ophiolite crustal section, a contact zone between the gabbro unit and the volcanics and diabase sheeted dikes, called the root zone of the sheeted dike complex, has been recently mapped at a fine scale in a selected area. The Oman ophiolite is derived from a fast spreading ridge which had a melt lens located between the main gabbro unit and the root zone of the sheeted dike complex. With a few exceptions accounted for, this horizon has a fairly constant thickness, ∼100 m, and a crude internal pseudostratigraphy. At the base of the root zone are isotropic ophitic gabbros interpreted as a thermal boundary layer. This layer is transitional between the magmatic system of the melt lens, convecting at 1200°C, and a high-temperature (<1100°C) hydrothermal system, convecting within the root zone. Above this level, the isotropic gabbros have been, locally, largely molten due to an influx of seawater, at ∼1100°C, thus generating varitextured ophitic and pegmatitic gabbros. These latter gabbros constitute the upper part of the root zone and are associated with trondjhemitic intrusions as screens in the lower sheeted dikes. Diorites and trondjhemites were also generated by hydrous melting, at temperatures below 1000°C. The whole root zone is a domain of very sharp average thermal gradient (∼7°C/m). At the top of the root zone, a new thermal boundary layer, with diabase dikes hydrated in amphibolite facies conditions, separates the preceding high-temperature convective system from the well-known greenschist facies (<450°C) hydrothermal system operating throughout the sheeted dike complex, up to the seafloor. The isotropic gabbros near the base of the root zone are intruded by protodikes with distinctive microgranular margins and an ophitic center. Protodike swarms are exceptional because, intruding a medium at ∼1100°C, they are largely destroyed by dike-in-dike intrusions and by hydrous melting. However, they demonstrate that this zone was generated by melt conduits issued from the underlying melt lens. Each dike of the sheeted dike complex is thus fed by one protodike. As this zone has been recently drilled by IODP in the eastern Pacific Ocean, a brief comparison is proposed. copyright 2008 by the American Geophysical Union.
ASJC Scopus Sachgebiete
- Erdkunde und Planetologie (insg.)
- Geophysik
- Erdkunde und Planetologie (insg.)
- Geochemie und Petrologie
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Geochemistry, Geophysics, Geosystems, Jahrgang 9, Nr. 5, Q05001, 02.05.2008.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Root zone of the sheeted dike complex in the Oman ophiolite
AU - Nicolas, Adolphe
AU - Boudier, Françoise
AU - Koepke, Jurgen
AU - France, Lydéric
AU - Ildefonse, Benoît
AU - Mevel, Catherine
PY - 2008/5/2
Y1 - 2008/5/2
N2 - In the Oman ophiolite crustal section, a contact zone between the gabbro unit and the volcanics and diabase sheeted dikes, called the root zone of the sheeted dike complex, has been recently mapped at a fine scale in a selected area. The Oman ophiolite is derived from a fast spreading ridge which had a melt lens located between the main gabbro unit and the root zone of the sheeted dike complex. With a few exceptions accounted for, this horizon has a fairly constant thickness, ∼100 m, and a crude internal pseudostratigraphy. At the base of the root zone are isotropic ophitic gabbros interpreted as a thermal boundary layer. This layer is transitional between the magmatic system of the melt lens, convecting at 1200°C, and a high-temperature (<1100°C) hydrothermal system, convecting within the root zone. Above this level, the isotropic gabbros have been, locally, largely molten due to an influx of seawater, at ∼1100°C, thus generating varitextured ophitic and pegmatitic gabbros. These latter gabbros constitute the upper part of the root zone and are associated with trondjhemitic intrusions as screens in the lower sheeted dikes. Diorites and trondjhemites were also generated by hydrous melting, at temperatures below 1000°C. The whole root zone is a domain of very sharp average thermal gradient (∼7°C/m). At the top of the root zone, a new thermal boundary layer, with diabase dikes hydrated in amphibolite facies conditions, separates the preceding high-temperature convective system from the well-known greenschist facies (<450°C) hydrothermal system operating throughout the sheeted dike complex, up to the seafloor. The isotropic gabbros near the base of the root zone are intruded by protodikes with distinctive microgranular margins and an ophitic center. Protodike swarms are exceptional because, intruding a medium at ∼1100°C, they are largely destroyed by dike-in-dike intrusions and by hydrous melting. However, they demonstrate that this zone was generated by melt conduits issued from the underlying melt lens. Each dike of the sheeted dike complex is thus fed by one protodike. As this zone has been recently drilled by IODP in the eastern Pacific Ocean, a brief comparison is proposed. copyright 2008 by the American Geophysical Union.
AB - In the Oman ophiolite crustal section, a contact zone between the gabbro unit and the volcanics and diabase sheeted dikes, called the root zone of the sheeted dike complex, has been recently mapped at a fine scale in a selected area. The Oman ophiolite is derived from a fast spreading ridge which had a melt lens located between the main gabbro unit and the root zone of the sheeted dike complex. With a few exceptions accounted for, this horizon has a fairly constant thickness, ∼100 m, and a crude internal pseudostratigraphy. At the base of the root zone are isotropic ophitic gabbros interpreted as a thermal boundary layer. This layer is transitional between the magmatic system of the melt lens, convecting at 1200°C, and a high-temperature (<1100°C) hydrothermal system, convecting within the root zone. Above this level, the isotropic gabbros have been, locally, largely molten due to an influx of seawater, at ∼1100°C, thus generating varitextured ophitic and pegmatitic gabbros. These latter gabbros constitute the upper part of the root zone and are associated with trondjhemitic intrusions as screens in the lower sheeted dikes. Diorites and trondjhemites were also generated by hydrous melting, at temperatures below 1000°C. The whole root zone is a domain of very sharp average thermal gradient (∼7°C/m). At the top of the root zone, a new thermal boundary layer, with diabase dikes hydrated in amphibolite facies conditions, separates the preceding high-temperature convective system from the well-known greenschist facies (<450°C) hydrothermal system operating throughout the sheeted dike complex, up to the seafloor. The isotropic gabbros near the base of the root zone are intruded by protodikes with distinctive microgranular margins and an ophitic center. Protodike swarms are exceptional because, intruding a medium at ∼1100°C, they are largely destroyed by dike-in-dike intrusions and by hydrous melting. However, they demonstrate that this zone was generated by melt conduits issued from the underlying melt lens. Each dike of the sheeted dike complex is thus fed by one protodike. As this zone has been recently drilled by IODP in the eastern Pacific Ocean, a brief comparison is proposed. copyright 2008 by the American Geophysical Union.
KW - Fast spreading ridges
KW - HT hydrothermalism
KW - Lid/gabbros transition
KW - Oman ophiolite
UR - http://www.scopus.com/inward/record.url?scp=67449088292&partnerID=8YFLogxK
U2 - 10.1029/2007GC001918
DO - 10.1029/2007GC001918
M3 - Article
AN - SCOPUS:67449088292
VL - 9
JO - Geochemistry, Geophysics, Geosystems
JF - Geochemistry, Geophysics, Geosystems
SN - 1525-2027
IS - 5
M1 - Q05001
ER -