Robust computational procedures for the nonlinear dynamic analysis of beam and shell structures

Publikation: Qualifikations-/StudienabschlussarbeitHabilitationsschrift

Autoren

  • Cristian Guillermo Gebhardt

Organisationseinheiten

Forschungs-netzwerk anzeigen

Details

Titel in ÜbersetzungRobuste Berechnungsverfahren zur nichtlinearen dynamischen Analyse von Balken- und Schalenstrukturen
OriginalspracheEnglisch
QualifikationDoctor habilitatus
Gradverleihende Hochschule
Betreut von
Datum der Verleihung des Grades5 Feb. 2020
ErscheinungsortHannover
PublikationsstatusVeröffentlicht - 2020

Abstract

Gegenwärtige und zukünftige dynamisch beanspruchte, schlanke Strukturen aus mehrschichtig verbundenen, hyperelastischen Werkstoffen, z. B. Windenergieanlagen und Hubschrauber usw., sind sehr komplex. Eine genaue Untersuchung im Zeitbereich erfordert den Einsatz von Methoden, die kinematische, geometrische sowie, bis zu einem gewissen Grad, materielle Nichtlinearitäten berücksichtigen sollten. Daher könnten Simulationen mit Beachtung von großen Verschiebungen, Drehungen und Verzerrungen nötig sein, um das mechanische Verhalten akkurat zu vorhersagen zu vermögen. Zunächst werden die Bewegungsgleichungen räumlich diskretisiert. Dann werden die zum Teil diskretisierten Gleichungen mittels eines Integrationsverfahrens zeitlich diskretisiert. Solche diskreten Gleichungen sind sehr steif, sodass sich die Berechnung der langzeitigen Lösung erschwert. Darüber hinaus ist die Einführung von Nebenbedingungen oft nötig, um komplexere Strukturen aufstellen zu können, wodurch sich die Komplexität erhöht wird und unerwünschte Eigenschaften noch verschärft werden. Um Robustheit zu gewinnen, sollen Berechnungsverfahren hergeleitet werden, die die zugrunde legende Physik in gewissem Maße erhalten können und gleichzeitig den hochfrequenten Anteil der Lösung unterdrücken können. Die Erfüllung dieser Anforderungen stellt sich als sehr herausfordernd dar. Das Hauptziel dieser Arbeit liegt an der Entwicklung von Berechnungsverfahren zur Vertiefung des Verständnises des dynamischen Verhaltens von Balken- und Schalenstrukturen. Um dieses Ziel zu erreichen, wird ein umfassender Ansatz vorgeschlagen. Dieser besteht aus: i) Einer auf Direktoren basierenden, Finite-Elemente-Formulierung für den geometrisch exakten Balken mit allgemeinen Querschnittseigenschaften; ii) einer auf Direktoren basierenden, Finite-Elemente-Formulierung für die Kontinuumsmechanik-basierte Schale aus mehrschichtig verbundenen, hyperelastischen Werkstoffen; iii) einer vereinheitlichten Beschreibung von Starrkörpern, Balken und Schalen und deren Kopplung mittels kinematischer Nebenbedingungen; und, iv) einem robusten Integrationsverfahren basierend auf dem gemittelten Vektorfeld. Des Weiteren wird Folgendes ebenfalls vorgeschlagen: v) Die Partikularisierung der Hauptgeodätenanalyse zur nichtlinearen Identifikation von Bewegungsmoden an Balkenstrukturen; und, vi) ein neues konservatives/dissipatives Integrationsverfahren für allgemeine nichtlineare mechanische Systeme basierend auf optimierten Modifizierungen höherer Ordnung, die die Defizite der Mittelpunktsregel beheben. Die sehr gute Leistung des vorgeschlagenen Ansatzes wird durch mehrere Beispiele unterschiedlicher Komplexität nachgewiesen.

Zitieren

Robust computational procedures for the nonlinear dynamic analysis of beam and shell structures. / Gebhardt, Cristian Guillermo.
Hannover, 2020. 146 S.

Publikation: Qualifikations-/StudienabschlussarbeitHabilitationsschrift

Gebhardt, CG 2020, 'Robust computational procedures for the nonlinear dynamic analysis of beam and shell structures', Doctor habilitatus, Gottfried Wilhelm Leibniz Universität Hannover, Hannover. https://doi.org/10.15488/9790
Gebhardt, C. G. (2020). Robust computational procedures for the nonlinear dynamic analysis of beam and shell structures. [Habilitationsschrift, Gottfried Wilhelm Leibniz Universität Hannover]. https://doi.org/10.15488/9790
Download
@phdthesis{2dae95b1d2ef4fcf9381fd3af6f4e248,
title = "Robust computational procedures for the nonlinear dynamic analysis of beam and shell structures",
abstract = "Existing and new slender structures made of hyperelastic multilayer composite materials subject to highly dynamic loads, e.g., wind turbines, helicopters, cars, speedboats or submarines inter alia, are very complex. Their dynamic analysis requires fully nonlinear formulations, at least from the kinematic and geometric point of view, and also to some extent from the material point of view. Thus, simulations in time-domain involving large displacements, rotations and strains could be necessary to predict their mechanical behavior accurately. Numerical procedures to carry out such simulations rely firstly on the partial discretization in space of the governing equations, for instance with finite elements. These semi discrete equations are further discretized in time with an integration scheme. The resulting discrete equations are in fact very stiff and therefore, the computation of the long-term behavior could be problematic. In many applications, the introduction of constraints is also necessary for rendering more complex structures. Besides introducing a new level of complexity, this can sharpen conditioning problems already present in the fully discrete problem. Additionally, we also require procedures able to annihilate the unwanted unresolved high-frequency content without upsetting of the underlying physics. However, the simultaneous satisfaction of all these requirements is a very challenging task. The main objective of this work is to provide means intended for helping to understand further the nonlinear dynamics of beam and shell structures made of hyperelastic multilayer composite materials subject to highly dynamic loads. To accomplish this main goal, we propose a unifying computational approach that relies on: i) a director-based finite-element formulation for geometrically exact beams with general cross-section properties; ii) a director-based finite-element formulation for solid-degenerate shells made of hyperelastic multilayer composite materials; iii) a unifying description of rigid bodies, geometrically exact beams and solid-degenerate shells and their combination with kinematic pairs, which avoids inherently the necessity of rotational degrees of freedom; and, iv) a robust integration scheme based on the average vector field. Additionally, we propose: v) the particularization of the principal geodesic analysis to identify motion patters exhibited by beam structures in a purely nonlinear setting; and, vi) a new conservative/dissipative integration method for general nonlinear mechanical systems, which relies on high-order correction terms that optimally modify the midpoint rule. Moreover, the excellent numerical performance of the proposed unifying framework and procedures is illustrated by means of a good number of examples with different difficulty levels.",
author = "Gebhardt, {Cristian Guillermo}",
year = "2020",
doi = "10.15488/9790",
language = "English",
type = "Habilitation treatise",
school = "Leibniz University Hannover",

}

Download

TY - THES

T1 - Robust computational procedures for the nonlinear dynamic analysis of beam and shell structures

AU - Gebhardt, Cristian Guillermo

PY - 2020

Y1 - 2020

N2 - Existing and new slender structures made of hyperelastic multilayer composite materials subject to highly dynamic loads, e.g., wind turbines, helicopters, cars, speedboats or submarines inter alia, are very complex. Their dynamic analysis requires fully nonlinear formulations, at least from the kinematic and geometric point of view, and also to some extent from the material point of view. Thus, simulations in time-domain involving large displacements, rotations and strains could be necessary to predict their mechanical behavior accurately. Numerical procedures to carry out such simulations rely firstly on the partial discretization in space of the governing equations, for instance with finite elements. These semi discrete equations are further discretized in time with an integration scheme. The resulting discrete equations are in fact very stiff and therefore, the computation of the long-term behavior could be problematic. In many applications, the introduction of constraints is also necessary for rendering more complex structures. Besides introducing a new level of complexity, this can sharpen conditioning problems already present in the fully discrete problem. Additionally, we also require procedures able to annihilate the unwanted unresolved high-frequency content without upsetting of the underlying physics. However, the simultaneous satisfaction of all these requirements is a very challenging task. The main objective of this work is to provide means intended for helping to understand further the nonlinear dynamics of beam and shell structures made of hyperelastic multilayer composite materials subject to highly dynamic loads. To accomplish this main goal, we propose a unifying computational approach that relies on: i) a director-based finite-element formulation for geometrically exact beams with general cross-section properties; ii) a director-based finite-element formulation for solid-degenerate shells made of hyperelastic multilayer composite materials; iii) a unifying description of rigid bodies, geometrically exact beams and solid-degenerate shells and their combination with kinematic pairs, which avoids inherently the necessity of rotational degrees of freedom; and, iv) a robust integration scheme based on the average vector field. Additionally, we propose: v) the particularization of the principal geodesic analysis to identify motion patters exhibited by beam structures in a purely nonlinear setting; and, vi) a new conservative/dissipative integration method for general nonlinear mechanical systems, which relies on high-order correction terms that optimally modify the midpoint rule. Moreover, the excellent numerical performance of the proposed unifying framework and procedures is illustrated by means of a good number of examples with different difficulty levels.

AB - Existing and new slender structures made of hyperelastic multilayer composite materials subject to highly dynamic loads, e.g., wind turbines, helicopters, cars, speedboats or submarines inter alia, are very complex. Their dynamic analysis requires fully nonlinear formulations, at least from the kinematic and geometric point of view, and also to some extent from the material point of view. Thus, simulations in time-domain involving large displacements, rotations and strains could be necessary to predict their mechanical behavior accurately. Numerical procedures to carry out such simulations rely firstly on the partial discretization in space of the governing equations, for instance with finite elements. These semi discrete equations are further discretized in time with an integration scheme. The resulting discrete equations are in fact very stiff and therefore, the computation of the long-term behavior could be problematic. In many applications, the introduction of constraints is also necessary for rendering more complex structures. Besides introducing a new level of complexity, this can sharpen conditioning problems already present in the fully discrete problem. Additionally, we also require procedures able to annihilate the unwanted unresolved high-frequency content without upsetting of the underlying physics. However, the simultaneous satisfaction of all these requirements is a very challenging task. The main objective of this work is to provide means intended for helping to understand further the nonlinear dynamics of beam and shell structures made of hyperelastic multilayer composite materials subject to highly dynamic loads. To accomplish this main goal, we propose a unifying computational approach that relies on: i) a director-based finite-element formulation for geometrically exact beams with general cross-section properties; ii) a director-based finite-element formulation for solid-degenerate shells made of hyperelastic multilayer composite materials; iii) a unifying description of rigid bodies, geometrically exact beams and solid-degenerate shells and their combination with kinematic pairs, which avoids inherently the necessity of rotational degrees of freedom; and, iv) a robust integration scheme based on the average vector field. Additionally, we propose: v) the particularization of the principal geodesic analysis to identify motion patters exhibited by beam structures in a purely nonlinear setting; and, vi) a new conservative/dissipative integration method for general nonlinear mechanical systems, which relies on high-order correction terms that optimally modify the midpoint rule. Moreover, the excellent numerical performance of the proposed unifying framework and procedures is illustrated by means of a good number of examples with different difficulty levels.

UR - https://www.repo.uni-hannover.de/handle/123456789/9847

U2 - 10.15488/9790

DO - 10.15488/9790

M3 - Habilitation treatise

CY - Hannover

ER -

Von denselben Autoren