Riemannian metrics on Teichmüller space

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Lutz Habermann
  • Jürgen Jost

Externe Organisationen

  • Ruhr-Universität Bochum
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)281-306
Seitenumfang26
FachzeitschriftManuscripta mathematica
Jahrgang89
Ausgabenummer1
PublikationsstatusVeröffentlicht - März 1996
Extern publiziertJa

Abstract

On each compact Riemann surface Σ of genus p ≥ 1, we have the Bergman metric obtained by pulling back the flat metric on its Jacobian via the Albanese map. Taking the L2-product of holomorphic quadratic differentials w.r.t. this metric induces a Riemannian metric on the Teichmüller space Tp that is invariant under the action of the modular group. We investigate geometric properties of this metric as an alternative to the usually employed Weil-Petersson metric.

ASJC Scopus Sachgebiete

Zitieren

Riemannian metrics on Teichmüller space. / Habermann, Lutz; Jost, Jürgen.
in: Manuscripta mathematica, Jahrgang 89, Nr. 1, 03.1996, S. 281-306.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Habermann, L & Jost, J 1996, 'Riemannian metrics on Teichmüller space', Manuscripta mathematica, Jg. 89, Nr. 1, S. 281-306.
Habermann, L., & Jost, J. (1996). Riemannian metrics on Teichmüller space. Manuscripta mathematica, 89(1), 281-306.
Habermann L, Jost J. Riemannian metrics on Teichmüller space. Manuscripta mathematica. 1996 Mär;89(1):281-306.
Habermann, Lutz ; Jost, Jürgen. / Riemannian metrics on Teichmüller space. in: Manuscripta mathematica. 1996 ; Jahrgang 89, Nr. 1. S. 281-306.
Download
@article{eb8d86113e154bf3bbfb1a56f03d659e,
title = "Riemannian metrics on Teichm{\"u}ller space",
abstract = "On each compact Riemann surface Σ of genus p ≥ 1, we have the Bergman metric obtained by pulling back the flat metric on its Jacobian via the Albanese map. Taking the L2-product of holomorphic quadratic differentials w.r.t. this metric induces a Riemannian metric on the Teichm{\"u}ller space Tp that is invariant under the action of the modular group. We investigate geometric properties of this metric as an alternative to the usually employed Weil-Petersson metric.",
author = "Lutz Habermann and J{\"u}rgen Jost",
year = "1996",
month = mar,
language = "English",
volume = "89",
pages = "281--306",
journal = "Manuscripta mathematica",
issn = "0025-2611",
publisher = "Springer New York",
number = "1",

}

Download

TY - JOUR

T1 - Riemannian metrics on Teichmüller space

AU - Habermann, Lutz

AU - Jost, Jürgen

PY - 1996/3

Y1 - 1996/3

N2 - On each compact Riemann surface Σ of genus p ≥ 1, we have the Bergman metric obtained by pulling back the flat metric on its Jacobian via the Albanese map. Taking the L2-product of holomorphic quadratic differentials w.r.t. this metric induces a Riemannian metric on the Teichmüller space Tp that is invariant under the action of the modular group. We investigate geometric properties of this metric as an alternative to the usually employed Weil-Petersson metric.

AB - On each compact Riemann surface Σ of genus p ≥ 1, we have the Bergman metric obtained by pulling back the flat metric on its Jacobian via the Albanese map. Taking the L2-product of holomorphic quadratic differentials w.r.t. this metric induces a Riemannian metric on the Teichmüller space Tp that is invariant under the action of the modular group. We investigate geometric properties of this metric as an alternative to the usually employed Weil-Petersson metric.

UR - http://www.scopus.com/inward/record.url?scp=52449148447&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:52449148447

VL - 89

SP - 281

EP - 306

JO - Manuscripta mathematica

JF - Manuscripta mathematica

SN - 0025-2611

IS - 1

ER -