Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 444-463 |
Seitenumfang | 20 |
Fachzeitschrift | AI (Switzerland) |
Jahrgang | 2 |
Ausgabenummer | 3 |
Publikationsstatus | Veröffentlicht - Sept. 2021 |
Extern publiziert | Ja |
Abstract
Inertial-sensor-based attitude estimation is a crucial technology in various applications, from human motion tracking to autonomous aerial and ground vehicles. Application scenarios differ in characteristics of the performed motion, presence of disturbances, and environmental conditions. Since state-of-the-art attitude estimators do not generalize well over these characteristics, their parameters must be tuned for the individual motion characteristics and circumstances. We propose RIANN, a ready-to-use, neural network-based, parameter-free, real-time-capable inertial attitude estimator, which generalizes well across different motion dynamics, environments, and sampling rates, without the need for application-specific adaptations. We gather six publicly available datasets of which we exploit two datasets for the method development and the training, and we use four datasets for evaluation of the trained estimator in three different test scenarios with varying practical relevance. Results show that RIANN outperforms state-of-the-art attitude estimation filters in the sense that it generalizes much better across a variety of motions and conditions in different applications, with different sensor hardware and different sampling frequencies. This is true even if the filters are tuned on each individual test dataset, whereas RIANN was trained on completely separate data and has never seen any of these test datasets. RIANN can be applied directly without adaptations or training and is therefore expected to enable plug-and-play solutions in numerous applications, especially when accuracy is crucial but no ground-truth data is available for tuning or when motion and disturbance characteristics are uncertain. We made RIANN publicly available.
ASJC Scopus Sachgebiete
- Informatik (insg.)
- Artificial intelligence
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: AI (Switzerland), Jahrgang 2, Nr. 3, 09.2021, S. 444-463.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - RIANN—A Robust Neural Network Outperforms Attitude Estimation Filters
AU - Weber, Daniel
AU - Gühmann, Clemens
AU - Seel, Thomas
N1 - Funding Information: This work was partly funded by the German Federal Ministry of Education and Research (FKZ: 16EMO0262). We acknowledge support by the German Research Foundation and the Open Access Publication Fund of TU Berlin.
PY - 2021/9
Y1 - 2021/9
N2 - Inertial-sensor-based attitude estimation is a crucial technology in various applications, from human motion tracking to autonomous aerial and ground vehicles. Application scenarios differ in characteristics of the performed motion, presence of disturbances, and environmental conditions. Since state-of-the-art attitude estimators do not generalize well over these characteristics, their parameters must be tuned for the individual motion characteristics and circumstances. We propose RIANN, a ready-to-use, neural network-based, parameter-free, real-time-capable inertial attitude estimator, which generalizes well across different motion dynamics, environments, and sampling rates, without the need for application-specific adaptations. We gather six publicly available datasets of which we exploit two datasets for the method development and the training, and we use four datasets for evaluation of the trained estimator in three different test scenarios with varying practical relevance. Results show that RIANN outperforms state-of-the-art attitude estimation filters in the sense that it generalizes much better across a variety of motions and conditions in different applications, with different sensor hardware and different sampling frequencies. This is true even if the filters are tuned on each individual test dataset, whereas RIANN was trained on completely separate data and has never seen any of these test datasets. RIANN can be applied directly without adaptations or training and is therefore expected to enable plug-and-play solutions in numerous applications, especially when accuracy is crucial but no ground-truth data is available for tuning or when motion and disturbance characteristics are uncertain. We made RIANN publicly available.
AB - Inertial-sensor-based attitude estimation is a crucial technology in various applications, from human motion tracking to autonomous aerial and ground vehicles. Application scenarios differ in characteristics of the performed motion, presence of disturbances, and environmental conditions. Since state-of-the-art attitude estimators do not generalize well over these characteristics, their parameters must be tuned for the individual motion characteristics and circumstances. We propose RIANN, a ready-to-use, neural network-based, parameter-free, real-time-capable inertial attitude estimator, which generalizes well across different motion dynamics, environments, and sampling rates, without the need for application-specific adaptations. We gather six publicly available datasets of which we exploit two datasets for the method development and the training, and we use four datasets for evaluation of the trained estimator in three different test scenarios with varying practical relevance. Results show that RIANN outperforms state-of-the-art attitude estimation filters in the sense that it generalizes much better across a variety of motions and conditions in different applications, with different sensor hardware and different sampling frequencies. This is true even if the filters are tuned on each individual test dataset, whereas RIANN was trained on completely separate data and has never seen any of these test datasets. RIANN can be applied directly without adaptations or training and is therefore expected to enable plug-and-play solutions in numerous applications, especially when accuracy is crucial but no ground-truth data is available for tuning or when motion and disturbance characteristics are uncertain. We made RIANN publicly available.
KW - attitude estimation
KW - inertial sensors
KW - information fusion
KW - neural networks
KW - nonlinear filters
KW - performance evaluation
KW - recurrent neural networks
UR - http://www.scopus.com/inward/record.url?scp=85169596951&partnerID=8YFLogxK
U2 - 10.3390/ai2030028
DO - 10.3390/ai2030028
M3 - Article
AN - SCOPUS:85169596951
VL - 2
SP - 444
EP - 463
JO - AI (Switzerland)
JF - AI (Switzerland)
IS - 3
ER -