Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 9306771 |
Seiten (von - bis) | 2357-2381 |
Seitenumfang | 25 |
Fachzeitschrift | IEEE ACCESS |
Jahrgang | 9 |
Frühes Online-Datum | 24 Dez. 2020 |
Publikationsstatus | Veröffentlicht - 6 Jan. 2021 |
Abstract
Magnetic devices are used in the majority of power electronic applications, e.g. power electronic converters, mains filters or burst/surge protection. Typically, they are the bulkiest and most cost-intensive components. Flux interaction of differently aligned magnetic fields in inductors and transformers can be one opportunity for size and cost reduction. It enables controllable magnetic devices through an additional manipulated variable to improve application design. The presented article gives an overview about different methods of flux interaction of magnetic fields, their background, potentials and open research questions. The focus lies on electrically controlled magnetic devices, realized by auxiliary windings wound on or introduced into the magnetic core to control its saturation and the inductive behavior of the device by injecting a current. However, the given methods and explanations are transferable to magnetic devices influenced by permanent magnets. The background of the different flux interaction methods are explained theoretically and verified by simulations and several laboratory prototypes. The focus of the simulations and experimental investigations lies on magnetic devices for power electronic converters, whereby especially ferrite core materials were used.
ASJC Scopus Sachgebiete
- Informatik (insg.)
- Allgemeine Computerwissenschaft
- Werkstoffwissenschaften (insg.)
- Allgemeine Materialwissenschaften
- Ingenieurwesen (insg.)
- Allgemeiner Maschinenbau
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: IEEE ACCESS, Jahrgang 9, 9306771, 06.01.2021, S. 2357-2381.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Review of Flux Interaction of Differently Aligned Magnetic Fields in Inductors and Transformers
AU - Pfeiffer, Jonas
AU - Kuster, Pierre
AU - Schulz, Ilka E. M.
AU - Friebe, Jens
AU - Zacharias, Peter
N1 - Funding Information: This work was supported in part by the German Federal Ministry of Education and Research (BMBF) through the BMBF Project under Grant 16EMO0234, in part by the Ministry of Science and Culture of Lower Saxony, in part by the Volkswagen Foundation, and in part by the Gottfried Wilhelm Leibniz Universtität Hannover through the Open Access Publishing Fund.
PY - 2021/1/6
Y1 - 2021/1/6
N2 - Magnetic devices are used in the majority of power electronic applications, e.g. power electronic converters, mains filters or burst/surge protection. Typically, they are the bulkiest and most cost-intensive components. Flux interaction of differently aligned magnetic fields in inductors and transformers can be one opportunity for size and cost reduction. It enables controllable magnetic devices through an additional manipulated variable to improve application design. The presented article gives an overview about different methods of flux interaction of magnetic fields, their background, potentials and open research questions. The focus lies on electrically controlled magnetic devices, realized by auxiliary windings wound on or introduced into the magnetic core to control its saturation and the inductive behavior of the device by injecting a current. However, the given methods and explanations are transferable to magnetic devices influenced by permanent magnets. The background of the different flux interaction methods are explained theoretically and verified by simulations and several laboratory prototypes. The focus of the simulations and experimental investigations lies on magnetic devices for power electronic converters, whereby especially ferrite core materials were used.
AB - Magnetic devices are used in the majority of power electronic applications, e.g. power electronic converters, mains filters or burst/surge protection. Typically, they are the bulkiest and most cost-intensive components. Flux interaction of differently aligned magnetic fields in inductors and transformers can be one opportunity for size and cost reduction. It enables controllable magnetic devices through an additional manipulated variable to improve application design. The presented article gives an overview about different methods of flux interaction of magnetic fields, their background, potentials and open research questions. The focus lies on electrically controlled magnetic devices, realized by auxiliary windings wound on or introduced into the magnetic core to control its saturation and the inductive behavior of the device by injecting a current. However, the given methods and explanations are transferable to magnetic devices influenced by permanent magnets. The background of the different flux interaction methods are explained theoretically and verified by simulations and several laboratory prototypes. The focus of the simulations and experimental investigations lies on magnetic devices for power electronic converters, whereby especially ferrite core materials were used.
KW - Controllable magnetics
KW - flux interaction
KW - inductor
KW - magnetic fields
KW - transformer
UR - http://www.scopus.com/inward/record.url?scp=85098775068&partnerID=8YFLogxK
U2 - 10.1109/ACCESS.2020.3047156
DO - 10.1109/ACCESS.2020.3047156
M3 - Article
VL - 9
SP - 2357
EP - 2381
JO - IEEE ACCESS
JF - IEEE ACCESS
SN - 2169-3536
M1 - 9306771
ER -