Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 885-894 |
Seitenumfang | 10 |
Fachzeitschrift | MYCOLOGIA |
Jahrgang | 111 |
Ausgabenummer | 6 |
Publikationsstatus | Veröffentlicht - 17 Okt. 2019 |
Abstract
Tyromyces floriformis, a potent fungal sesquiterpene producer, was grown Cerrena unicolor, as a model organism in submerged culture to search for chemicals affecting sesquiterpene biosynthesis in vitro. Thirty-one sesquiterpenes and sesquiterpenoids were identified in the supernatant, among them the fruity α-ylangene as the main volatile. Additives, such as some polysaccharides or lipids, did not affect the qualitative product spectrum but strongly affected the quantitative synthesis. Rye arabinoxylan and other polysaccharides, such as chitin, starch, and agarose, almost blocked the synthesis of α-ylangene. Single addition of the building blocks of arabinoxylan, arabinose, xylose, or ferulic acid showed no inhibitory effect, whereas 0.05% (w/v) 32-α-l-arabinofuranosyl-xylobiose and larger oligosaccharides resulted in a significant suppression. In contrast, addition of acetyl donors boosted the α-ylangene concentration by 1 order of magnitude up to >40 mg L−1. Both increased as well as decreased α-ylangene concentrations correlated with the intracellular sesquiterpene cyclase activity. Similar experiments using submerged cultured Cerrena unicolor, Postia placenta, and Coprinopsis cinerea showed that the additives affected fungal sesquiterpenoid synthesis differently. Whereas the addition of acetyl donors boosted the synthesis in all biphasic cultures, it was inhibited by polysaccharides in fungi preferably interacting with lignified plants. In contrast, Cerrena unicolor, known for a symbiotic lifestyle with wasps, responded by forming higher concentrations of the possibly insect-attracting sesquiterpenes.
ASJC Scopus Sachgebiete
- Agrar- und Biowissenschaften (insg.)
- Ökologie, Evolution, Verhaltenswissenschaften und Systematik
- Biochemie, Genetik und Molekularbiologie (insg.)
- Physiologie
- Biochemie, Genetik und Molekularbiologie (insg.)
- Molekularbiologie
- Biochemie, Genetik und Molekularbiologie (insg.)
- Genetik
- Biochemie, Genetik und Molekularbiologie (insg.)
- Zellbiologie
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: MYCOLOGIA, Jahrgang 111, Nr. 6, 17.10.2019, S. 885-894.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Response of the sesquiterpene synthesis in submerged cultures of the Basidiomycete Tyromyces floriformis to the medium composition
AU - Grosse, Miriam
AU - Strauss, Elisa
AU - Krings, Ulrich
AU - Berger, Ralf G.
N1 - Funding Information: We are grateful to the Lower Saxony Ministry of Science and Arts for support through the research cluster “Bioeconomy 2.0: Innovation potentials of side-streams of food processing.” The authors thank Franziska Ersoy for careful reading of the manuscript. All data are available upon request from the corresponding author.
PY - 2019/10/17
Y1 - 2019/10/17
N2 - Tyromyces floriformis, a potent fungal sesquiterpene producer, was grown Cerrena unicolor, as a model organism in submerged culture to search for chemicals affecting sesquiterpene biosynthesis in vitro. Thirty-one sesquiterpenes and sesquiterpenoids were identified in the supernatant, among them the fruity α-ylangene as the main volatile. Additives, such as some polysaccharides or lipids, did not affect the qualitative product spectrum but strongly affected the quantitative synthesis. Rye arabinoxylan and other polysaccharides, such as chitin, starch, and agarose, almost blocked the synthesis of α-ylangene. Single addition of the building blocks of arabinoxylan, arabinose, xylose, or ferulic acid showed no inhibitory effect, whereas 0.05% (w/v) 32-α-l-arabinofuranosyl-xylobiose and larger oligosaccharides resulted in a significant suppression. In contrast, addition of acetyl donors boosted the α-ylangene concentration by 1 order of magnitude up to >40 mg L−1. Both increased as well as decreased α-ylangene concentrations correlated with the intracellular sesquiterpene cyclase activity. Similar experiments using submerged cultured Cerrena unicolor, Postia placenta, and Coprinopsis cinerea showed that the additives affected fungal sesquiterpenoid synthesis differently. Whereas the addition of acetyl donors boosted the synthesis in all biphasic cultures, it was inhibited by polysaccharides in fungi preferably interacting with lignified plants. In contrast, Cerrena unicolor, known for a symbiotic lifestyle with wasps, responded by forming higher concentrations of the possibly insect-attracting sesquiterpenes.
AB - Tyromyces floriformis, a potent fungal sesquiterpene producer, was grown Cerrena unicolor, as a model organism in submerged culture to search for chemicals affecting sesquiterpene biosynthesis in vitro. Thirty-one sesquiterpenes and sesquiterpenoids were identified in the supernatant, among them the fruity α-ylangene as the main volatile. Additives, such as some polysaccharides or lipids, did not affect the qualitative product spectrum but strongly affected the quantitative synthesis. Rye arabinoxylan and other polysaccharides, such as chitin, starch, and agarose, almost blocked the synthesis of α-ylangene. Single addition of the building blocks of arabinoxylan, arabinose, xylose, or ferulic acid showed no inhibitory effect, whereas 0.05% (w/v) 32-α-l-arabinofuranosyl-xylobiose and larger oligosaccharides resulted in a significant suppression. In contrast, addition of acetyl donors boosted the α-ylangene concentration by 1 order of magnitude up to >40 mg L−1. Both increased as well as decreased α-ylangene concentrations correlated with the intracellular sesquiterpene cyclase activity. Similar experiments using submerged cultured Cerrena unicolor, Postia placenta, and Coprinopsis cinerea showed that the additives affected fungal sesquiterpenoid synthesis differently. Whereas the addition of acetyl donors boosted the synthesis in all biphasic cultures, it was inhibited by polysaccharides in fungi preferably interacting with lignified plants. In contrast, Cerrena unicolor, known for a symbiotic lifestyle with wasps, responded by forming higher concentrations of the possibly insect-attracting sesquiterpenes.
KW - Arabinoxylan
KW - sesquiterpene synthesis
KW - tegosoft
KW - Tyromyces floriformis
KW - volatilome
KW - α-ylangene
UR - http://www.scopus.com/inward/record.url?scp=85075579736&partnerID=8YFLogxK
U2 - 10.1080/00275514.2019.1668740
DO - 10.1080/00275514.2019.1668740
M3 - Article
C2 - 31622174
AN - SCOPUS:85075579736
VL - 111
SP - 885
EP - 894
JO - MYCOLOGIA
JF - MYCOLOGIA
SN - 0027-5514
IS - 6
ER -