REGULAR ORBITS OF COPRIME LINEAR GROUPS IN LARGE CHARACTERISTIC

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Benjamin Sambale

Externe Organisationen

  • Technische Universität Kaiserslautern
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)438-444
Seitenumfang7
FachzeitschriftBulletin of the Australian Mathematical Society
Jahrgang96
Ausgabenummer3
Frühes Online-Datum2 Mai 2017
PublikationsstatusVeröffentlicht - 2017
Extern publiziertJa

Abstract

We prove that a finite coprime linear group (Formula presented.) in characteristic (Formula presented.) has a regular orbit. This bound on (Formula presented.) is best possible. We also give an application to blocks with abelian defect groups.

ASJC Scopus Sachgebiete

Zitieren

REGULAR ORBITS OF COPRIME LINEAR GROUPS IN LARGE CHARACTERISTIC. / Sambale, Benjamin.
in: Bulletin of the Australian Mathematical Society, Jahrgang 96, Nr. 3, 2017, S. 438-444.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Sambale B. REGULAR ORBITS OF COPRIME LINEAR GROUPS IN LARGE CHARACTERISTIC. Bulletin of the Australian Mathematical Society. 2017;96(3):438-444. Epub 2017 Mai 2. doi: 10.1017/S0004972717000326
Download
@article{f85f7a2bf7f34148ae17a3cafa94854b,
title = "REGULAR ORBITS OF COPRIME LINEAR GROUPS IN LARGE CHARACTERISTIC",
abstract = "We prove that a finite coprime linear group (Formula presented.) in characteristic (Formula presented.) has a regular orbit. This bound on (Formula presented.) is best possible. We also give an application to blocks with abelian defect groups.",
keywords = "coprime linear groups, minimal subgroups, regular orbits",
author = "Benjamin Sambale",
note = "Funding information: This work is supported by the German Research Foundation (project SA 2864/1-1) and the Daimler and Benz Foundation (project 32-08/13).",
year = "2017",
doi = "10.1017/S0004972717000326",
language = "English",
volume = "96",
pages = "438--444",
journal = "Bulletin of the Australian Mathematical Society",
issn = "0004-9727",
publisher = "Cambridge University Press",
number = "3",

}

Download

TY - JOUR

T1 - REGULAR ORBITS OF COPRIME LINEAR GROUPS IN LARGE CHARACTERISTIC

AU - Sambale, Benjamin

N1 - Funding information: This work is supported by the German Research Foundation (project SA 2864/1-1) and the Daimler and Benz Foundation (project 32-08/13).

PY - 2017

Y1 - 2017

N2 - We prove that a finite coprime linear group (Formula presented.) in characteristic (Formula presented.) has a regular orbit. This bound on (Formula presented.) is best possible. We also give an application to blocks with abelian defect groups.

AB - We prove that a finite coprime linear group (Formula presented.) in characteristic (Formula presented.) has a regular orbit. This bound on (Formula presented.) is best possible. We also give an application to blocks with abelian defect groups.

KW - coprime linear groups

KW - minimal subgroups

KW - regular orbits

UR - http://www.scopus.com/inward/record.url?scp=85018419373&partnerID=8YFLogxK

U2 - 10.1017/S0004972717000326

DO - 10.1017/S0004972717000326

M3 - Article

AN - SCOPUS:85018419373

VL - 96

SP - 438

EP - 444

JO - Bulletin of the Australian Mathematical Society

JF - Bulletin of the Australian Mathematical Society

SN - 0004-9727

IS - 3

ER -