Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 438-444 |
Seitenumfang | 7 |
Fachzeitschrift | Bulletin of the Australian Mathematical Society |
Jahrgang | 96 |
Ausgabenummer | 3 |
Frühes Online-Datum | 2 Mai 2017 |
Publikationsstatus | Veröffentlicht - 2017 |
Extern publiziert | Ja |
Abstract
We prove that a finite coprime linear group (Formula presented.) in characteristic (Formula presented.) has a regular orbit. This bound on (Formula presented.) is best possible. We also give an application to blocks with abelian defect groups.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Allgemeine Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Bulletin of the Australian Mathematical Society, Jahrgang 96, Nr. 3, 2017, S. 438-444.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - REGULAR ORBITS OF COPRIME LINEAR GROUPS IN LARGE CHARACTERISTIC
AU - Sambale, Benjamin
N1 - Funding information: This work is supported by the German Research Foundation (project SA 2864/1-1) and the Daimler and Benz Foundation (project 32-08/13).
PY - 2017
Y1 - 2017
N2 - We prove that a finite coprime linear group (Formula presented.) in characteristic (Formula presented.) has a regular orbit. This bound on (Formula presented.) is best possible. We also give an application to blocks with abelian defect groups.
AB - We prove that a finite coprime linear group (Formula presented.) in characteristic (Formula presented.) has a regular orbit. This bound on (Formula presented.) is best possible. We also give an application to blocks with abelian defect groups.
KW - coprime linear groups
KW - minimal subgroups
KW - regular orbits
UR - http://www.scopus.com/inward/record.url?scp=85018419373&partnerID=8YFLogxK
U2 - 10.1017/S0004972717000326
DO - 10.1017/S0004972717000326
M3 - Article
AN - SCOPUS:85018419373
VL - 96
SP - 438
EP - 444
JO - Bulletin of the Australian Mathematical Society
JF - Bulletin of the Australian Mathematical Society
SN - 0004-9727
IS - 3
ER -