Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | e13347 |
Fachzeitschrift | European journal of soil science |
Jahrgang | 74 |
Ausgabenummer | 1 |
Frühes Online-Datum | 2 Feb. 2023 |
Publikationsstatus | Veröffentlicht - 22 Feb. 2023 |
Abstract
Spatiotemporal characterisation of the soil redox status within the capillary fringe (CF) is a challenging task. Air-filled porosities (ε), oxygen concentration (O2) and soil redox potential (EH) are interrelated soil variables within active biogeochemical domains such as the CF. We investigated the impact of water table (WT) rise and drainage in an undisturbed topsoil and subsoil sample taken from a Calcaric Gleysol for a period of 46 days. We merged 1D (EH and matric potential) and 2D (O2) systems to monitor at high spatiotemporal resolution redox dynamics within self-constructed redoxtron housings and complemented the data set by a 3D pore network characterization using X-ray microtomography (X-ray μCT). Depletion of O2 was faster in the organic matter- and clay-rich aggregated topsoil and the CF extended >10 cm above the artificial WT. The homogeneous and less-aggregated subsoil extended only 4 cm above the WT as indicated by ε–O2–EH data during saturation. After drainage, 2D O2 imaging revealed a fast aeration towards the lower depths of the topsoil, which agrees with the connected ε derived by X-ray μCT (εCT_conn) of 14.9% of the total porosity. However, small-scaled anoxic domains with O2 saturation <5% were apparent even after lowering the WT (down to 0.25 cm2 in size) for 23 days. These domains remained a nucleus for reducing soil conditions (EH < −100 mV), which made it challenging to characterise the soil redox status in the CF. In contrast, the subsoil aeration reached O2 saturation after 8 days for the complete soil volume. Values of εCT_conn around zero in the subsoil highlighted that soil aeration was independent of this parameter suggesting that other variables such as microbial activity must be considered when predicting the soil redox status from ε alone. The use of redoxtrons in combination with localised redox-measurements and image based pore space analysis resulted in a better 2D/3D characterisation of the pore system and related O2 transport properties. This allowed us to analyse the distribution and activity of microbiological niches highly associated with the spatiotemporal variable redox dynamics in soil environments. Highlights: The time needed to turn from reducing to oxidising (period where all platinum electrodes feature EH > 300 mV) condition differ for two samples with contrasting soil structure. The subsoil with presumably low O2 consumption rates aerated considerably faster than the topsoil and exclusively by O2 diffusion through medium- and fine-sized pores. To derive the soil redox status based upon the triplet ε–O2–EH is challenging at present in heterogeneous soil domains and larger soil volumes than 250 cm3. Undisturbed soil sampling along with 2D/3D redox measurement systems (e.g., redoxtrons) improve our understanding of redox dynamics within the capillary fringe.
ASJC Scopus Sachgebiete
- Agrar- und Biowissenschaften (insg.)
- Bodenkunde
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: European journal of soil science, Jahrgang 74, Nr. 1, e13347, 22.02.2023.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Redoxtrons
T2 - An experimental system to study redox processes within the capillary fringe
AU - Dorau, Kristof
AU - Uteau, Daniel
AU - Maisch, Markus
AU - Kappler, Andreas
AU - Peth, Stephan
AU - Mansfeldt, Tim
N1 - Funding Information: We greatly acknowledge the support by Mr. Steffen Richter and Mr. Christian Dressel for support during construction of the redoxtron bodies, Dr. Regine Spohner for visualising the technical drawing of the experimental setup, Mrs. Karin Greef, Mrs. Maren Hövels, Mr. Constantin Lux, and Dr. Felix Brück were a great help during maintenance of the incubation experiment, and Dr. Robert Meier for support to analyse the O2 data. Open Access funding enabled and organized by Projekt DEAL.
PY - 2023/2/22
Y1 - 2023/2/22
N2 - Spatiotemporal characterisation of the soil redox status within the capillary fringe (CF) is a challenging task. Air-filled porosities (ε), oxygen concentration (O2) and soil redox potential (EH) are interrelated soil variables within active biogeochemical domains such as the CF. We investigated the impact of water table (WT) rise and drainage in an undisturbed topsoil and subsoil sample taken from a Calcaric Gleysol for a period of 46 days. We merged 1D (EH and matric potential) and 2D (O2) systems to monitor at high spatiotemporal resolution redox dynamics within self-constructed redoxtron housings and complemented the data set by a 3D pore network characterization using X-ray microtomography (X-ray μCT). Depletion of O2 was faster in the organic matter- and clay-rich aggregated topsoil and the CF extended >10 cm above the artificial WT. The homogeneous and less-aggregated subsoil extended only 4 cm above the WT as indicated by ε–O2–EH data during saturation. After drainage, 2D O2 imaging revealed a fast aeration towards the lower depths of the topsoil, which agrees with the connected ε derived by X-ray μCT (εCT_conn) of 14.9% of the total porosity. However, small-scaled anoxic domains with O2 saturation <5% were apparent even after lowering the WT (down to 0.25 cm2 in size) for 23 days. These domains remained a nucleus for reducing soil conditions (EH < −100 mV), which made it challenging to characterise the soil redox status in the CF. In contrast, the subsoil aeration reached O2 saturation after 8 days for the complete soil volume. Values of εCT_conn around zero in the subsoil highlighted that soil aeration was independent of this parameter suggesting that other variables such as microbial activity must be considered when predicting the soil redox status from ε alone. The use of redoxtrons in combination with localised redox-measurements and image based pore space analysis resulted in a better 2D/3D characterisation of the pore system and related O2 transport properties. This allowed us to analyse the distribution and activity of microbiological niches highly associated with the spatiotemporal variable redox dynamics in soil environments. Highlights: The time needed to turn from reducing to oxidising (period where all platinum electrodes feature EH > 300 mV) condition differ for two samples with contrasting soil structure. The subsoil with presumably low O2 consumption rates aerated considerably faster than the topsoil and exclusively by O2 diffusion through medium- and fine-sized pores. To derive the soil redox status based upon the triplet ε–O2–EH is challenging at present in heterogeneous soil domains and larger soil volumes than 250 cm3. Undisturbed soil sampling along with 2D/3D redox measurement systems (e.g., redoxtrons) improve our understanding of redox dynamics within the capillary fringe.
AB - Spatiotemporal characterisation of the soil redox status within the capillary fringe (CF) is a challenging task. Air-filled porosities (ε), oxygen concentration (O2) and soil redox potential (EH) are interrelated soil variables within active biogeochemical domains such as the CF. We investigated the impact of water table (WT) rise and drainage in an undisturbed topsoil and subsoil sample taken from a Calcaric Gleysol for a period of 46 days. We merged 1D (EH and matric potential) and 2D (O2) systems to monitor at high spatiotemporal resolution redox dynamics within self-constructed redoxtron housings and complemented the data set by a 3D pore network characterization using X-ray microtomography (X-ray μCT). Depletion of O2 was faster in the organic matter- and clay-rich aggregated topsoil and the CF extended >10 cm above the artificial WT. The homogeneous and less-aggregated subsoil extended only 4 cm above the WT as indicated by ε–O2–EH data during saturation. After drainage, 2D O2 imaging revealed a fast aeration towards the lower depths of the topsoil, which agrees with the connected ε derived by X-ray μCT (εCT_conn) of 14.9% of the total porosity. However, small-scaled anoxic domains with O2 saturation <5% were apparent even after lowering the WT (down to 0.25 cm2 in size) for 23 days. These domains remained a nucleus for reducing soil conditions (EH < −100 mV), which made it challenging to characterise the soil redox status in the CF. In contrast, the subsoil aeration reached O2 saturation after 8 days for the complete soil volume. Values of εCT_conn around zero in the subsoil highlighted that soil aeration was independent of this parameter suggesting that other variables such as microbial activity must be considered when predicting the soil redox status from ε alone. The use of redoxtrons in combination with localised redox-measurements and image based pore space analysis resulted in a better 2D/3D characterisation of the pore system and related O2 transport properties. This allowed us to analyse the distribution and activity of microbiological niches highly associated with the spatiotemporal variable redox dynamics in soil environments. Highlights: The time needed to turn from reducing to oxidising (period where all platinum electrodes feature EH > 300 mV) condition differ for two samples with contrasting soil structure. The subsoil with presumably low O2 consumption rates aerated considerably faster than the topsoil and exclusively by O2 diffusion through medium- and fine-sized pores. To derive the soil redox status based upon the triplet ε–O2–EH is challenging at present in heterogeneous soil domains and larger soil volumes than 250 cm3. Undisturbed soil sampling along with 2D/3D redox measurement systems (e.g., redoxtrons) improve our understanding of redox dynamics within the capillary fringe.
KW - environmental monitoring
KW - incubation experiments
KW - redox processes
KW - soil reducing conditions
KW - undisturbed soil
KW - X-ray microtomography
UR - http://www.scopus.com/inward/record.url?scp=85148879631&partnerID=8YFLogxK
U2 - 10.1111/ejss.13347
DO - 10.1111/ejss.13347
M3 - Article
AN - SCOPUS:85148879631
VL - 74
JO - European journal of soil science
JF - European journal of soil science
SN - 1351-0754
IS - 1
M1 - e13347
ER -