Reconciling turnover models of roots and soil organic carbon with radiocarbon measurements

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Autorschaft

  • Bernhard Ahrens

Organisationseinheiten

Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
QualifikationDoctor rerum naturalium
Gradverleihende Hochschule
Betreut von
Datum der Verleihung des Grades27 Sept. 2021
ErscheinungsortHannover
PublikationsstatusVeröffentlicht - 2021

Abstract

Terrestrische Ökosysteme und Böden sind wichtige Akteure im globalen Kohlenstoffkreislauf der Erde und eng mit der Entwicklung der atmosphärischen CO2-Konzentration und dem Klimawandel verbunden. Allein der Boden speichert ein Vielfaches des Kohlenstoffs in der Atmosphäre, und Bodenkohlenstoff-Prozesse könnten daher erhebliche Auswirkungen auf die atmosphärischen CO2-Konzentrationen haben. Um die Zeitskalen des Kohlenstoffkreislaufs in terrestrischen Ökosystemen zu verstehen, sind Radiokohlenstoffmessungen ein wichtiges Werkzeug. Dennoch stehen die Ergebnisse von Radiokohlenstoffmessungen oft im Widerspruch zu den Ergebnissen anderer Messtechniken: Für die Untersuchung des Wurzelumsatzes hat Radiokohlenstoff im Vergleich zu anderen Methoden, wie z.B. dem sequenziellen Entkernen oder Wurzelkameras, wesentlich längere Umsatzzeiten ergeben. Für die Untersuchung der organischen Bodensubstanz hat Radiokohlenstoff auf Pools verwiesen, die sich auf einer hundert- bis tausendjährigen Zeitskala befinden. Empirische Erkenntnisse deuten jedoch darauf hin, dass einzelne Verbindungen der organischen Bodensubstanz wesentlich schneller umgesetzt werden. Das übergeordnete Ziel dieser Dissertation ist es, Umsatzmodelle von Wurzeln und organischem Kohlenstoff im Boden mit Radiokohlenstoffdaten in Einklang zu bringen, indem neues Prozessverständnis in diese Modelle integriert wird. Der erste Teil der Dissertation befasst sich mit der Vereinbarkeit von Radiokohlenstoffgehalten von Feinwurzeln und Minirhizotron-Beobachtungen von Feinwurzellebensspannen. Zur Simulation des Wurzelumsatzes wurde bisher hauptsächlich ein Ein-Pool-Modell verwendet. Dieses Modell geht von einer konstanten Wahrscheinlichkeit für das Absterben einer Wurzel über ihre gesamte Lebensdauer aus. Minirhizotron-Beobachtungen haben jedoch auf eine höhere Wahrscheinlichkeit für das Absterben einer Wurzel zu Beginn ihrer Lebensdauer hingewiesen. In dieser Arbeit wurde eine Methode entwickelt, die es ermöglicht, Minirhizotron- und Radiokohlenstoffdaten zur gemeinsamen Schätzung der Wurzelumsatzzeiten zu verwenden. Zu diesem Zweck wurden Überlebensfunktionen aus dem Feld der Ereigniszeitanalyse verwendet, um die Lebensspanne einzelner Wurzeln zur Bestimmung der mittleren Verweilzeit von Feinwurzeln zu nutzen. Radiokohlenstoff in Feinwurzeln wurde über eine Faltung der Überlebensfunktionen mit der atmosphärischen Radiokohlenstoff-Kurve modelliert. Dieser Ansatz ermöglicht es, eine Kalibrierung von mittleren Verweilzeiten an Radiokohlenstoff- und Minirhizotron-Daten durchzuführen. Der zweite Teil der Dissertation befasst sich mit der Vereinbarkeit von Tiefengradienten des organischen Kohlenstoffs und Radiokohlenstoffs im Boden mit einem neuen Modell zum Umsatz organischer Bodensubstanz. Das neue Modell berücksichtigt mechanistische Beschreibungen mikrobieller und organo-mineralischer Wechselwirkungen. Ziel war es, den Beitrag der mikrobiellen Limitierung und der organo-mineralischen Wechselwirkungen zu scheinbar tausendjährigen Radiokohlenstoffaltern des organischen Kohlenstoffs im Unterboden zu bestimmen. Hier wird einem Modell, das mit standortspezifischen Sorptionskapazitäten parametrisiert ist, eine allgemeingültigere Parametrisierung der Sorptionskapazität gegenübergestellt. Mit dieser allgemeingültigen Formulierung der Sorptionskapazität, die auf dem Ton- und Schluffgehalt basiert, können Unterschiede der Tiefengradienten von Radiokohlenstoff zwischen Standorten dargestellt werden. Nach der Kalibrierung an Profile von bodenorganischem Kohlenstoff und Radiokohlenstoff wurde mit Hilfe von Modellexperimenten die Bedeutung einzelner Prozesse und deren Zusammenspiel zur Erklärung von Radiokohlenstoff-Tiefengradienten untersucht. Ein besonderer Schwerpunkt wurde darauf gelegt, wie verschiedene Sorptionskapazitäten mit mikrobieller Limitierung zusammenwirken. Dieser Ansatz erlaubte es uns, scheinbar jahrtausendealte Radiokohlenstoffalter mit Mechanismen des mikrobiellen Abbaus und der Sorptionskapazität anstelle von chemischer Rekalzitranz zu erklären. Der mechanistische Rahmen, der in dieser Arbeit entwickelt wurde, hilft den Umsatz organischer Substanz im Boden, die unterirdischen Teile des globalen Kohlenstoffkreislaufs und schließlich seine Reaktion auf die globale Erwärmung besser zu verstehen.

Zitieren

Reconciling turnover models of roots and soil organic carbon with radiocarbon measurements. / Ahrens, Bernhard.
Hannover, 2021. 232 S.

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Ahrens, B 2021, 'Reconciling turnover models of roots and soil organic carbon with radiocarbon measurements', Doctor rerum naturalium, Gottfried Wilhelm Leibniz Universität Hannover, Hannover. https://doi.org/10.15488/11347
Ahrens, B. (2021). Reconciling turnover models of roots and soil organic carbon with radiocarbon measurements. [Dissertation, Gottfried Wilhelm Leibniz Universität Hannover]. https://doi.org/10.15488/11347
Download
@phdthesis{6c208c70aa7d49b3a27d3eb6080c44df,
title = "Reconciling turnover models of roots and soil organic carbon with radiocarbon measurements",
abstract = "Terrestrial ecosystems and soils are major actors in the Earth{\textquoteright}s carbon cycle, and tightly linked to the evolution of atmospheric CO2 concentrations and climate change. Soils alone store several times more carbon than the atmosphere, and carbon cycling in soils could hence have substantial impact on atmospheric CO2 concentrations. To understand the timescales of carbon cycling in terrestrial ecosystems, radiocarbon measurements are an important tool. Yet, results from radiocarbon measurements have often conflicted with results other measurement techniques: In the study of root turnover, radiocarbon has yielded turnover times that are much longer compared to those attained by other methods, such as sequential coring or minirhizotrons. In the study of soil organic carbon turnover, radiocarbon has pointed to pools that cycle on centennial to millennial timescales. Empirical evidence, however, has suggested that individual compounds turn over more rapidly. This dissertation's overarching goal is to reconcile turnover models of roots and soil organic carbon with radiocarbon data by incorporating new process understanding into these models. The first part of the dissertation reconciles radiocarbon contents of fine roots with observations of root lifetimes from minirhizotrons. Previously root turnover had mainly been estimated by a one-pool model. This kind of model assumes an equal likelihood for root death throughout the lifetime of a root. Minirhizotron observations, however, have pointed to higher likelihoods of root turnover at the beginning of a root{\textquoteright}s lifetime. In this thesis, a framework was developed that allows using minirhizotron and radiocarbon data in conjunction to estimate mean fine-root residence times. Survival functions from the field of survival analysis were used to estimate mean fine-root residence times from lifetime data of individual roots. Convoluting fine-root survival functions with the atmospheric radiocarbon bomb curve allowed performing a joint estimation of mean fine-root residence times from radiocarbon and minirhizotron data. The second part of the dissertation develops a new soil organic carbon profile model that incorporates mechanistic descriptions of microbial and organo-mineral interactions. The aim is to reconcile apparent millennial radiocarbon ages of soil organic carbon in the subsoil with other observations by considering the contribution of microbial decomposition limitation and organo-mineral interactions. A version of the model parametrized with site-specific sorption capacities was contrasted with a more generic parametrization of sorption capacity. With this generic formulation of sorption capacity based on clay and silt content, between-site differences of radiocarbon depth gradients could be represented. After calibration to profiles of soil organic carbon and radiocarbon, model experiments were used to study the importance of individual processes and their interaction for explaining radiocarbon depth gradients. A special focus was put on how different levels of sorption capacity interact with microbial substrate limitation. This approach allowed us to reconcile apparent millennial radiocarbon ages with mechanisms of microbial decomposition and sorption capacity instead of chemical recalcitrance. The mechanistic framework developed in this thesis can be used to better understand soil organic matter turnover, the belowground parts of the global carbon cycle, and eventually its response to global warming.",
author = "Bernhard Ahrens",
note = "Doctoral thesis",
year = "2021",
doi = "10.15488/11347",
language = "English",
school = "Leibniz University Hannover",

}

Download

TY - BOOK

T1 - Reconciling turnover models of roots and soil organic carbon with radiocarbon measurements

AU - Ahrens, Bernhard

N1 - Doctoral thesis

PY - 2021

Y1 - 2021

N2 - Terrestrial ecosystems and soils are major actors in the Earth’s carbon cycle, and tightly linked to the evolution of atmospheric CO2 concentrations and climate change. Soils alone store several times more carbon than the atmosphere, and carbon cycling in soils could hence have substantial impact on atmospheric CO2 concentrations. To understand the timescales of carbon cycling in terrestrial ecosystems, radiocarbon measurements are an important tool. Yet, results from radiocarbon measurements have often conflicted with results other measurement techniques: In the study of root turnover, radiocarbon has yielded turnover times that are much longer compared to those attained by other methods, such as sequential coring or minirhizotrons. In the study of soil organic carbon turnover, radiocarbon has pointed to pools that cycle on centennial to millennial timescales. Empirical evidence, however, has suggested that individual compounds turn over more rapidly. This dissertation's overarching goal is to reconcile turnover models of roots and soil organic carbon with radiocarbon data by incorporating new process understanding into these models. The first part of the dissertation reconciles radiocarbon contents of fine roots with observations of root lifetimes from minirhizotrons. Previously root turnover had mainly been estimated by a one-pool model. This kind of model assumes an equal likelihood for root death throughout the lifetime of a root. Minirhizotron observations, however, have pointed to higher likelihoods of root turnover at the beginning of a root’s lifetime. In this thesis, a framework was developed that allows using minirhizotron and radiocarbon data in conjunction to estimate mean fine-root residence times. Survival functions from the field of survival analysis were used to estimate mean fine-root residence times from lifetime data of individual roots. Convoluting fine-root survival functions with the atmospheric radiocarbon bomb curve allowed performing a joint estimation of mean fine-root residence times from radiocarbon and minirhizotron data. The second part of the dissertation develops a new soil organic carbon profile model that incorporates mechanistic descriptions of microbial and organo-mineral interactions. The aim is to reconcile apparent millennial radiocarbon ages of soil organic carbon in the subsoil with other observations by considering the contribution of microbial decomposition limitation and organo-mineral interactions. A version of the model parametrized with site-specific sorption capacities was contrasted with a more generic parametrization of sorption capacity. With this generic formulation of sorption capacity based on clay and silt content, between-site differences of radiocarbon depth gradients could be represented. After calibration to profiles of soil organic carbon and radiocarbon, model experiments were used to study the importance of individual processes and their interaction for explaining radiocarbon depth gradients. A special focus was put on how different levels of sorption capacity interact with microbial substrate limitation. This approach allowed us to reconcile apparent millennial radiocarbon ages with mechanisms of microbial decomposition and sorption capacity instead of chemical recalcitrance. The mechanistic framework developed in this thesis can be used to better understand soil organic matter turnover, the belowground parts of the global carbon cycle, and eventually its response to global warming.

AB - Terrestrial ecosystems and soils are major actors in the Earth’s carbon cycle, and tightly linked to the evolution of atmospheric CO2 concentrations and climate change. Soils alone store several times more carbon than the atmosphere, and carbon cycling in soils could hence have substantial impact on atmospheric CO2 concentrations. To understand the timescales of carbon cycling in terrestrial ecosystems, radiocarbon measurements are an important tool. Yet, results from radiocarbon measurements have often conflicted with results other measurement techniques: In the study of root turnover, radiocarbon has yielded turnover times that are much longer compared to those attained by other methods, such as sequential coring or minirhizotrons. In the study of soil organic carbon turnover, radiocarbon has pointed to pools that cycle on centennial to millennial timescales. Empirical evidence, however, has suggested that individual compounds turn over more rapidly. This dissertation's overarching goal is to reconcile turnover models of roots and soil organic carbon with radiocarbon data by incorporating new process understanding into these models. The first part of the dissertation reconciles radiocarbon contents of fine roots with observations of root lifetimes from minirhizotrons. Previously root turnover had mainly been estimated by a one-pool model. This kind of model assumes an equal likelihood for root death throughout the lifetime of a root. Minirhizotron observations, however, have pointed to higher likelihoods of root turnover at the beginning of a root’s lifetime. In this thesis, a framework was developed that allows using minirhizotron and radiocarbon data in conjunction to estimate mean fine-root residence times. Survival functions from the field of survival analysis were used to estimate mean fine-root residence times from lifetime data of individual roots. Convoluting fine-root survival functions with the atmospheric radiocarbon bomb curve allowed performing a joint estimation of mean fine-root residence times from radiocarbon and minirhizotron data. The second part of the dissertation develops a new soil organic carbon profile model that incorporates mechanistic descriptions of microbial and organo-mineral interactions. The aim is to reconcile apparent millennial radiocarbon ages of soil organic carbon in the subsoil with other observations by considering the contribution of microbial decomposition limitation and organo-mineral interactions. A version of the model parametrized with site-specific sorption capacities was contrasted with a more generic parametrization of sorption capacity. With this generic formulation of sorption capacity based on clay and silt content, between-site differences of radiocarbon depth gradients could be represented. After calibration to profiles of soil organic carbon and radiocarbon, model experiments were used to study the importance of individual processes and their interaction for explaining radiocarbon depth gradients. A special focus was put on how different levels of sorption capacity interact with microbial substrate limitation. This approach allowed us to reconcile apparent millennial radiocarbon ages with mechanisms of microbial decomposition and sorption capacity instead of chemical recalcitrance. The mechanistic framework developed in this thesis can be used to better understand soil organic matter turnover, the belowground parts of the global carbon cycle, and eventually its response to global warming.

U2 - 10.15488/11347

DO - 10.15488/11347

M3 - Doctoral thesis

CY - Hannover

ER -

Von denselben Autoren