Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 104302 |
Fachzeitschrift | Physical Review B |
Jahrgang | 91 |
Ausgabenummer | 10 |
Publikationsstatus | Veröffentlicht - 3 März 2015 |
Abstract
We study the real-time dynamics of a highly excited charge carrier coupled to quantum phonons via a Holstein-type electron-phonon coupling. This is a prototypical example for the nonequilibrium dynamics in an interacting many-body system where excess energy is transferred from electronic to phononic degrees of freedom. We use diagonalization in a limited functional space (LFS) to study the nonequilibrium dynamics on a finite one-dimensional chain. This method agrees with exact diagonalization and the time-evolving block-decimation method, in both the relaxation regime and the long-time stationary state, and among these three methods it is the most efficient and versatile one for this problem. We perform a comprehensive analysis of the time evolution by calculating the electron, phonon and electron-phonon coupling energies, and the electronic momentum distribution function. The numerical results are compared to analytical solutions for short times, for a small hopping amplitude and for a weak electron-phonon coupling. In the latter case, the relaxation dynamics obtained from the Boltzmann equation agrees very well with the LFS data. We also study the time dependence of the eigenstates of the single-site reduced density matrix, which defines the so-called optimal phonon modes. We discuss their structure in nonequilibrium and the distribution of their weights. Our analysis shows that the structure of optimal phonon modes contains very useful information for the interpretation of the numerical data.
ASJC Scopus Sachgebiete
- Werkstoffwissenschaften (insg.)
- Elektronische, optische und magnetische Materialien
- Physik und Astronomie (insg.)
- Physik der kondensierten Materie
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Physical Review B, Jahrgang 91, Nr. 10, 104302, 03.03.2015.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Real-time decay of a highly excited charge carrier in the one-dimensional Holstein model
AU - Dorfner, F.
AU - Vidmar, L.
AU - Brockt, C.
AU - Jeckelmann, E.
AU - Heidrich-Meisner, F.
N1 - Funding information: Inmersos en este ambiente reivindicativo, dos jóvenes profesores florentinos, Leonardo Savioli y Leonardo Ricci, convencidos del poder de la contaminación de pensamientos y la complementariedad de las artes, deciden desarrollar desde una perspectiva disidente nuevos métodos de trabajo aprovechando la Universidad como una ocasión óptima para fomentar la creación colectiva y abrir los campos de referencia a experiencias venidas del exterior. Progresivamente van integrando en sus cursos el estudio de las nuevas tecnologías asociadas a los medios de comunicación, el acercamiento a las megaestructuras como experimentos para la transformación utópica de la vida –influenciados por las noticias que llegaban de Londres– y las nuevas ideas de Eco sobre comunicación visual y el concepto de diseñador “semiológicamente consciente”21, imprimiendo también un nuevo sesgo político a sus enseñanzas para diferenciarse del “modelo oficial”. Ambos se convertirán en inspiradores de una docena de arquitectos que algunos años después, conscientes de la crisis que atravesaba la arquitectura y ante la falta de expectativas profesionales22, deciden “vaciar” la disciplina23 para alcanzar un “grado cero” desde el que re-construir un universo formal nuevo24.
PY - 2015/3/3
Y1 - 2015/3/3
N2 - We study the real-time dynamics of a highly excited charge carrier coupled to quantum phonons via a Holstein-type electron-phonon coupling. This is a prototypical example for the nonequilibrium dynamics in an interacting many-body system where excess energy is transferred from electronic to phononic degrees of freedom. We use diagonalization in a limited functional space (LFS) to study the nonequilibrium dynamics on a finite one-dimensional chain. This method agrees with exact diagonalization and the time-evolving block-decimation method, in both the relaxation regime and the long-time stationary state, and among these three methods it is the most efficient and versatile one for this problem. We perform a comprehensive analysis of the time evolution by calculating the electron, phonon and electron-phonon coupling energies, and the electronic momentum distribution function. The numerical results are compared to analytical solutions for short times, for a small hopping amplitude and for a weak electron-phonon coupling. In the latter case, the relaxation dynamics obtained from the Boltzmann equation agrees very well with the LFS data. We also study the time dependence of the eigenstates of the single-site reduced density matrix, which defines the so-called optimal phonon modes. We discuss their structure in nonequilibrium and the distribution of their weights. Our analysis shows that the structure of optimal phonon modes contains very useful information for the interpretation of the numerical data.
AB - We study the real-time dynamics of a highly excited charge carrier coupled to quantum phonons via a Holstein-type electron-phonon coupling. This is a prototypical example for the nonequilibrium dynamics in an interacting many-body system where excess energy is transferred from electronic to phononic degrees of freedom. We use diagonalization in a limited functional space (LFS) to study the nonequilibrium dynamics on a finite one-dimensional chain. This method agrees with exact diagonalization and the time-evolving block-decimation method, in both the relaxation regime and the long-time stationary state, and among these three methods it is the most efficient and versatile one for this problem. We perform a comprehensive analysis of the time evolution by calculating the electron, phonon and electron-phonon coupling energies, and the electronic momentum distribution function. The numerical results are compared to analytical solutions for short times, for a small hopping amplitude and for a weak electron-phonon coupling. In the latter case, the relaxation dynamics obtained from the Boltzmann equation agrees very well with the LFS data. We also study the time dependence of the eigenstates of the single-site reduced density matrix, which defines the so-called optimal phonon modes. We discuss their structure in nonequilibrium and the distribution of their weights. Our analysis shows that the structure of optimal phonon modes contains very useful information for the interpretation of the numerical data.
UR - http://www.scopus.com/inward/record.url?scp=84924347950&partnerID=8YFLogxK
U2 - 10.1103/physrevb.91.104302
DO - 10.1103/physrevb.91.104302
M3 - Article
VL - 91
JO - Physical Review B
JF - Physical Review B
SN - 2469-9950
IS - 10
M1 - 104302
ER -