Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 223-285 |
Seitenumfang | 63 |
Fachzeitschrift | Annals of Global Analysis and Geometry |
Jahrgang | 31 |
Ausgabenummer | 3 |
Publikationsstatus | Veröffentlicht - 28 Feb. 2007 |
Abstract
We study the closed extensions (realizations) of differential operators subject to homogeneous boundary conditions on weighted L p -Sobolev spaces over a manifold with boundary and conical singularities. Under natural ellipticity conditions we determine the domains of the minimal and the maximal extension. We show that both are Fredholm operators and give a formula for the relative index.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Analysis
- Sozialwissenschaften (insg.)
- Politikwissenschaften und internationale Beziehungen
- Mathematik (insg.)
- Geometrie und Topologie
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Annals of Global Analysis and Geometry, Jahrgang 31, Nr. 3, 28.02.2007, S. 223-285.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Realizations of differential operators on conic manifolds with boundary
AU - Coriasco, S.
AU - Schrohe, E.
AU - Seiler, J.
N1 - Copyright: Copyright 2007 Elsevier B.V., All rights reserved.
PY - 2007/2/28
Y1 - 2007/2/28
N2 - We study the closed extensions (realizations) of differential operators subject to homogeneous boundary conditions on weighted L p -Sobolev spaces over a manifold with boundary and conical singularities. Under natural ellipticity conditions we determine the domains of the minimal and the maximal extension. We show that both are Fredholm operators and give a formula for the relative index.
AB - We study the closed extensions (realizations) of differential operators subject to homogeneous boundary conditions on weighted L p -Sobolev spaces over a manifold with boundary and conical singularities. Under natural ellipticity conditions we determine the domains of the minimal and the maximal extension. We show that both are Fredholm operators and give a formula for the relative index.
KW - Boundary value problems
KW - Manifolds with conical singularities
KW - Pseudodifferential analysis
UR - http://www.scopus.com/inward/record.url?scp=33947404868&partnerID=8YFLogxK
U2 - 10.1007/s10455-006-9019-7
DO - 10.1007/s10455-006-9019-7
M3 - Article
AN - SCOPUS:33947404868
VL - 31
SP - 223
EP - 285
JO - Annals of Global Analysis and Geometry
JF - Annals of Global Analysis and Geometry
SN - 0232-704X
IS - 3
ER -