Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 1099-1133 |
Seitenumfang | 35 |
Fachzeitschrift | Communications in Mathematical Physics volume |
Jahrgang | 366 |
Ausgabenummer | 3 |
Publikationsstatus | Veröffentlicht - 31 Jan. 2019 |
Abstract
ASJC Scopus Sachgebiete
- Physik und Astronomie (insg.)
- Statistische und nichtlineare Physik
- Mathematik (insg.)
- Mathematische Physik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Communications in Mathematical Physics volume, Jahrgang 366, Nr. 3, 31.01.2019, S. 1099-1133.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Real holomorphic sections of the Deligne-Hitchin twistor space
AU - Biswas, Indranil
AU - Heller, Sebastian
AU - Roeser, Markus
N1 - © Springer-Verlag GmbH Germany, part of Springer Nature 2019
PY - 2019/1/31
Y1 - 2019/1/31
N2 - We study the holomorphic sections of the Deligne–Hitchin moduli space of a compact Riemann surface, especially the sections that are invariant under the natural anti-holomorphic involutions of the moduli space. Their relationships with the harmonic maps are established. As a by product, a question of Simpson on such sections, posed in [Si4], is answered.
AB - We study the holomorphic sections of the Deligne–Hitchin moduli space of a compact Riemann surface, especially the sections that are invariant under the natural anti-holomorphic involutions of the moduli space. Their relationships with the harmonic maps are established. As a by product, a question of Simpson on such sections, posed in [Si4], is answered.
KW - math.DG
KW - math.AG
KW - 53C26, 53C28, 14H60
UR - http://www.scopus.com/inward/record.url?scp=85062779006&partnerID=8YFLogxK
U2 - 10.48550/arXiv.1802.06587
DO - 10.48550/arXiv.1802.06587
M3 - Article
VL - 366
SP - 1099
EP - 1133
JO - Communications in Mathematical Physics volume
JF - Communications in Mathematical Physics volume
SN - 1432-0916
IS - 3
ER -