Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 325-349 |
Seitenumfang | 25 |
Fachzeitschrift | Representation Theory |
Jahrgang | 23 |
Ausgabenummer | 11 |
Publikationsstatus | Veröffentlicht - 30 Sept. 2019 |
Extern publiziert | Ja |
Abstract
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Mathematik (sonstige)
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Representation Theory, Jahrgang 23, Nr. 11, 30.09.2019, S. 325-349.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Rationality of blocks of quasi-simple finite groups
AU - Farrell, Niamh
AU - Kessar, Radha
N1 - Publisher Copyright: © 2019 American Mathematical Society.
PY - 2019/9/30
Y1 - 2019/9/30
N2 - Let \(\ell\) be a prime number. We show that the Morita Frobenius number of an \(\ell\)-block of a quasi-simple finite group is at most 4 and that the strong Frobenius number is at most \(4|D|^2!\), where D denotes a defect group of the block. We deduce that a basic algebra of any block of the group algebra of a quasi-simple finite group over an algebraically closed field of characteristic \(\ell\) is defined over a field with \(\ell^a\) elements for some \(a \leq 4\). We derive consequences for Donovan's conjecture. In particular, we show that Donovan's conjecture holds for \(\ell\)-blocks of special linear groups.
AB - Let \(\ell\) be a prime number. We show that the Morita Frobenius number of an \(\ell\)-block of a quasi-simple finite group is at most 4 and that the strong Frobenius number is at most \(4|D|^2!\), where D denotes a defect group of the block. We deduce that a basic algebra of any block of the group algebra of a quasi-simple finite group over an algebraically closed field of characteristic \(\ell\) is defined over a field with \(\ell^a\) elements for some \(a \leq 4\). We derive consequences for Donovan's conjecture. In particular, we show that Donovan's conjecture holds for \(\ell\)-blocks of special linear groups.
KW - math.RT
UR - http://www.scopus.com/inward/record.url?scp=85073918640&partnerID=8YFLogxK
U2 - 10.1090/ert/530
DO - 10.1090/ert/530
M3 - Article
VL - 23
SP - 325
EP - 349
JO - Representation Theory
JF - Representation Theory
SN - 1088-4165
IS - 11
ER -