Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 012068 |
Fachzeitschrift | Journal of Physics: Conference Series |
Jahrgang | 1194 |
Ausgabenummer | 1 |
Frühes Online-Datum | 2 Okt. 2019 |
Publikationsstatus | Elektronisch veröffentlicht (E-Pub) - 2 Okt. 2019 |
Veranstaltung | 32nd International Colloquium on Group Theoretical Methods in Physics, ICGTMP 2018 - Prague, Tschechische Republik Dauer: 9 Juli 2018 → 13 Juli 2018 |
Abstract
We set up a correspondence between solutions of the Yang-Mills equations on × S 3 and in Minkowski spacetime via de Sitter space. Some known Abelian and non-Abelian exact solutions are rederived. For the Maxwell case we present a straightforward algorithm to generate an infinite number of explicit solutions, with fields and potentials in Minkowski coordinates given by rational functions of increasing complexity. We illustrate our method with some nontrivial examples.
ASJC Scopus Sachgebiete
- Physik und Astronomie (insg.)
- Allgemeine Physik und Astronomie
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Journal of Physics: Conference Series, Jahrgang 1194, Nr. 1, 012068, 02.10.2019.
Publikation: Beitrag in Fachzeitschrift › Konferenzaufsatz in Fachzeitschrift › Forschung › Peer-Review
}
TY - JOUR
T1 - Rational Maxwell knots via de Sitter space
AU - Lechtenfeld, O.
AU - Zhilin, G.
PY - 2019/10/2
Y1 - 2019/10/2
N2 - We set up a correspondence between solutions of the Yang-Mills equations on × S 3 and in Minkowski spacetime via de Sitter space. Some known Abelian and non-Abelian exact solutions are rederived. For the Maxwell case we present a straightforward algorithm to generate an infinite number of explicit solutions, with fields and potentials in Minkowski coordinates given by rational functions of increasing complexity. We illustrate our method with some nontrivial examples.
AB - We set up a correspondence between solutions of the Yang-Mills equations on × S 3 and in Minkowski spacetime via de Sitter space. Some known Abelian and non-Abelian exact solutions are rederived. For the Maxwell case we present a straightforward algorithm to generate an infinite number of explicit solutions, with fields and potentials in Minkowski coordinates given by rational functions of increasing complexity. We illustrate our method with some nontrivial examples.
UR - http://www.scopus.com/inward/record.url?scp=85065583853&partnerID=8YFLogxK
U2 - 10.1088/1742-6596/1194/1/012068
DO - 10.1088/1742-6596/1194/1/012068
M3 - Conference article
AN - SCOPUS:85065583853
VL - 1194
JO - Journal of Physics: Conference Series
JF - Journal of Physics: Conference Series
SN - 1742-6588
IS - 1
M1 - 012068
T2 - 32nd International Colloquium on Group Theoretical Methods in Physics, ICGTMP 2018
Y2 - 9 July 2018 through 13 July 2018
ER -