Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 393-406 |
Seitenumfang | 14 |
Fachzeitschrift | Journal of applied probability |
Jahrgang | 42 |
Ausgabenummer | 2 |
Publikationsstatus | Veröffentlicht - Juni 2005 |
Abstract
We generalize a theorem due to Keilson on the approximate exponentiality of waiting times for rare events in regenerative processes. We use the result to investigate the limit distribution for a family of first entrance times in a sequence of Ehrenfest urn models. As a second application, we consider approximate pattern matching, a problem arising in molecular biology and other areas.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Statistik und Wahrscheinlichkeit
- Mathematik (insg.)
- Allgemeine Mathematik
- Entscheidungswissenschaften (insg.)
- Statistik, Wahrscheinlichkeit und Ungewissheit
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Journal of applied probability, Jahrgang 42, Nr. 2, 06.2005, S. 393-406.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Rarity and exponentiality
T2 - An extension of Keilson's theorem, with applications
AU - Grübel, Rudolf
AU - Reich, Marcus
PY - 2005/6
Y1 - 2005/6
N2 - We generalize a theorem due to Keilson on the approximate exponentiality of waiting times for rare events in regenerative processes. We use the result to investigate the limit distribution for a family of first entrance times in a sequence of Ehrenfest urn models. As a second application, we consider approximate pattern matching, a problem arising in molecular biology and other areas.
AB - We generalize a theorem due to Keilson on the approximate exponentiality of waiting times for rare events in regenerative processes. We use the result to investigate the limit distribution for a family of first entrance times in a sequence of Ehrenfest urn models. As a second application, we consider approximate pattern matching, a problem arising in molecular biology and other areas.
KW - Exponential distribution
KW - First entrance time
KW - Levenshtein distance
KW - Limit distribution
KW - Ornstein-Uhlenbeck process
KW - Pattern matching
KW - Random string
KW - Regenerative process
UR - http://www.scopus.com/inward/record.url?scp=23944440905&partnerID=8YFLogxK
U2 - 10.1239/jap/1118777178
DO - 10.1239/jap/1118777178
M3 - Article
AN - SCOPUS:23944440905
VL - 42
SP - 393
EP - 406
JO - Journal of applied probability
JF - Journal of applied probability
SN - 0021-9002
IS - 2
ER -