Rapid phase retrieval of ultrashort pulses from dispersion scan traces using deep neural networks

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

Externe Organisationen

  • Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI)
  • Laser Zentrum Hannover e.V. (LZH)
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)979-982
Seitenumfang4
FachzeitschriftOptics Letters
Jahrgang44
Ausgabenummer4
Frühes Online-Datum13 Feb. 2019
PublikationsstatusVeröffentlicht - 15 Feb. 2019

Abstract

The knowledge of the temporal shape of femtosecond pulses is of major interest for all their applications. The reconstruction of the temporal shape of these pulses is an inverse problem for characterization techniques, which benefit from an inherent redundancy in the measurement. Conventionally, time-consuming optimization algorithms are used to solve the inverse problems. Here, we demonstrate the reconstruction of ultrashort pulses from dispersion scan traces employing a deep neural network. The network is trained with a multitude of artificial and noisy dispersion scan traces from randomly shaped pulses. The retrieval takes only 16 ms enabling video-rate reconstructions. This approach reveals a great tolerance against noisy conditions, delivering reliable retrievals from traces with signal-to-noise ratios down to 5.

ASJC Scopus Sachgebiete

Zitieren

Rapid phase retrieval of ultrashort pulses from dispersion scan traces using deep neural networks. / Kleinert, Sven; Tajalli, Ayhan; Nagy, Tamas et al.
in: Optics Letters, Jahrgang 44, Nr. 4, 15.02.2019, S. 979-982.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Kleinert S, Tajalli A, Nagy T, Morgner U. Rapid phase retrieval of ultrashort pulses from dispersion scan traces using deep neural networks. Optics Letters. 2019 Feb 15;44(4):979-982. Epub 2019 Feb 13. doi: 10.1364/ol.44.000979
Kleinert, Sven ; Tajalli, Ayhan ; Nagy, Tamas et al. / Rapid phase retrieval of ultrashort pulses from dispersion scan traces using deep neural networks. in: Optics Letters. 2019 ; Jahrgang 44, Nr. 4. S. 979-982.
Download
@article{5f9ab08b5c2b4cfd92e029beecc42ec7,
title = "Rapid phase retrieval of ultrashort pulses from dispersion scan traces using deep neural networks",
abstract = "The knowledge of the temporal shape of femtosecond pulses is of major interest for all their applications. The reconstruction of the temporal shape of these pulses is an inverse problem for characterization techniques, which benefit from an inherent redundancy in the measurement. Conventionally, time-consuming optimization algorithms are used to solve the inverse problems. Here, we demonstrate the reconstruction of ultrashort pulses from dispersion scan traces employing a deep neural network. The network is trained with a multitude of artificial and noisy dispersion scan traces from randomly shaped pulses. The retrieval takes only 16 ms enabling video-rate reconstructions. This approach reveals a great tolerance against noisy conditions, delivering reliable retrievals from traces with signal-to-noise ratios down to 5.",
author = "Sven Kleinert and Ayhan Tajalli and Tamas Nagy and Uwe Morgner",
note = "Funding information: Deutsche Forschungsgemeinschaft (DFG) under Germany{\textquoteright}s Excellence Strategy within the Cluster of Excellence PhoenixD (Mo850/16-2; EXC 2122. ID: 390833453); Bundesministerium f{\"u}r Bildung und Forschung (BMBF) (13N14064); Nieders{\"a}chsisches Ministerium f{\"u}r Wissenschaft und Kultur (MWK) (Tailored Light).",
year = "2019",
month = feb,
day = "15",
doi = "10.1364/ol.44.000979",
language = "English",
volume = "44",
pages = "979--982",
journal = "Optics Letters",
issn = "0146-9592",
publisher = "OSA - The Optical Society",
number = "4",

}

Download

TY - JOUR

T1 - Rapid phase retrieval of ultrashort pulses from dispersion scan traces using deep neural networks

AU - Kleinert, Sven

AU - Tajalli, Ayhan

AU - Nagy, Tamas

AU - Morgner, Uwe

N1 - Funding information: Deutsche Forschungsgemeinschaft (DFG) under Germany’s Excellence Strategy within the Cluster of Excellence PhoenixD (Mo850/16-2; EXC 2122. ID: 390833453); Bundesministerium für Bildung und Forschung (BMBF) (13N14064); Niedersächsisches Ministerium für Wissenschaft und Kultur (MWK) (Tailored Light).

PY - 2019/2/15

Y1 - 2019/2/15

N2 - The knowledge of the temporal shape of femtosecond pulses is of major interest for all their applications. The reconstruction of the temporal shape of these pulses is an inverse problem for characterization techniques, which benefit from an inherent redundancy in the measurement. Conventionally, time-consuming optimization algorithms are used to solve the inverse problems. Here, we demonstrate the reconstruction of ultrashort pulses from dispersion scan traces employing a deep neural network. The network is trained with a multitude of artificial and noisy dispersion scan traces from randomly shaped pulses. The retrieval takes only 16 ms enabling video-rate reconstructions. This approach reveals a great tolerance against noisy conditions, delivering reliable retrievals from traces with signal-to-noise ratios down to 5.

AB - The knowledge of the temporal shape of femtosecond pulses is of major interest for all their applications. The reconstruction of the temporal shape of these pulses is an inverse problem for characterization techniques, which benefit from an inherent redundancy in the measurement. Conventionally, time-consuming optimization algorithms are used to solve the inverse problems. Here, we demonstrate the reconstruction of ultrashort pulses from dispersion scan traces employing a deep neural network. The network is trained with a multitude of artificial and noisy dispersion scan traces from randomly shaped pulses. The retrieval takes only 16 ms enabling video-rate reconstructions. This approach reveals a great tolerance against noisy conditions, delivering reliable retrievals from traces with signal-to-noise ratios down to 5.

UR - http://www.scopus.com/inward/record.url?scp=85061543774&partnerID=8YFLogxK

U2 - 10.1364/ol.44.000979

DO - 10.1364/ol.44.000979

M3 - Article

C2 - 30768040

AN - SCOPUS:85061543774

VL - 44

SP - 979

EP - 982

JO - Optics Letters

JF - Optics Letters

SN - 0146-9592

IS - 4

ER -

Von denselben Autoren