Quantum metrology using tailored non-classical states

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Autoren

  • Jonas Junker
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
QualifikationDoctor rerum naturalium
Gradverleihende Hochschule
Betreut von
Datum der Verleihung des Grades21 Feb. 2023
ErscheinungsortHannover
PublikationsstatusVeröffentlicht - 2023

Abstract

Gequetschtes Licht spielt eine wichtige Rolle für Gravitationswellendetektoren oder Anwendungen in der Quanteninformationstechnologie. Diese Quantenzustände werden je nach Anwendung speziell präpariert. Für einige Anwendungen ist beispielsweise die Quetschung in einer, für andere nur in der Kombination zweier verschiedener optischer Moden erforderlich. Außerdem kann die Quetschung für alle Frequenzen konstant oder frequenzabhängig auftreten. Im Rahmen dieser Arbeit werden neuartige quantenoptische Methoden entwickelt, die unterschiedlich angepasste nicht-klassische Lichtquellen verwenden. Die einzelnen gequetschten Zustände werden anwendungsbezogen erzeugt, stabilisiert und charakterisiert. In der Spektroskopie ist die Messempfindlichkeit oft durch technisches Rauschen bei niedrigen Frequenzen limitiert. Die erste Publikation zeigt die Messung von kleinen, niederfrequenten Phasensignalen, ohne die Leistung des Lasers zu erhöhen. Unser phasenmoduliertes Lichtfeld verschiebt das Signal zu hohen Messfrequenzen und umgeht daher technisches Rauschen. Weil wir zusätzlich mit gequetschtem Licht arbeiten, kann dort auch Quantenrauschen um 6 dB verringert werden. Unsere Messmethode zeigt die Detektion von Signalen, die bei 100 Hz und 20 kHz oszillieren. Die Messgenauigkeit von optomechanischen Sensoren wie zum Gravitationswellendetektoren ist fundamental begrenzt durch eine Kombination aus quantenmechanischem Schrot- und Strahlungsdruckrauschen. Ein Zustand mit konstanter Quetschquadratur, der von einem resonanten optisch parametrischen Oszillator (OPO) erzeugt wird, wirkt nur gegen einen dieser beiden Rauschbeiträge. Um beide Beiträge zu unterdrücken, ist ein besonderer frequenzabhängiger gequetschter Zustand erforderlich. Unsere zweite Publikation zeigt, dass ein von der Resonanzfrequenz verstimmter OPO frequenzabhängiges gequetschtes Licht erzeugt. Er kann annähernd als effektiver negativer Massen-Oszillator verwendet werden, um Quantenrauschen kohärent zu unterdrücken. Der von uns erzeugte Zustand, der durch Quantentomographie rekonstruiert wird und über Megahertz-Frequenzen rotiert, weist einen Rotationswinkel von 39° und eine maximale Quetschung von 5.5 dB auf. Gequetschte Quantenzustände mit zwei Moden werden für moderne Anwendungen wie die Quanteninformationstechnologie benötigt. In der dritten Publikation befassen wir uns mit der Aufgabe, die zehn unabhängigen Einträge der Kovarianzmatrix eines um 7 dB gequetschten Zweimodenzustands zu bestimmen. Damit ist der Quantenzustand vollständig charakterisiert. Wir zeigen eine vollständige Rekonstruktion eines zweimodigen gequetschten Zustands unter Verwendung eines einzigen olarisationsempfindlichen Homodyn-Detektors, der zusätzliche Optiken und potenzielle Verlustkanäle vermeidet. Die Erkenntnisse dieser Arbeit sind relevant für Experimente in der Quantenmetrologie, z.B. in der Spektroskopie oder bei Gravitationswellendetektoren, die mit Sensitivitäten am Standardquantenlimit arbeiten. Die gewonnenen Erkenntnisse über die Erzeugung und Handhabung nicht-klassischer Zustände ermöglichen Fortschritte in der uanteninformationstechnologie.

Zitieren

Quantum metrology using tailored non-classical states. / Junker, Jonas.
Hannover, 2023. 153 S.

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Junker, J 2023, 'Quantum metrology using tailored non-classical states', Doctor rerum naturalium, Gottfried Wilhelm Leibniz Universität Hannover, Hannover. https://doi.org/10.15488/13411
Junker, J. (2023). Quantum metrology using tailored non-classical states. [Dissertation, Gottfried Wilhelm Leibniz Universität Hannover]. https://doi.org/10.15488/13411
Junker J. Quantum metrology using tailored non-classical states. Hannover, 2023. 153 S. doi: 10.15488/13411
Junker, Jonas. / Quantum metrology using tailored non-classical states. Hannover, 2023. 153 S.
Download
@phdthesis{fe6d6446de5f4c5194a86022402f55ad,
title = "Quantum metrology using tailored non-classical states",
abstract = "Squeezed states of light play a significant role in various technologies ranging from high-precision metrology such as gravitational wave detection to quantum information.These quantum states are prepared to carry particular characteristics depending on their application. For instance, some applications require squeezing in one, others only in the combination of two distinct optical modes. Furthermore, squeezing can appear constant for all frequencies or frequency-dependently. In this thesis, novel quantum optical methods employing different, tailored non-classical light sources, are developed and described. The individual squeezed states are controlled and characterised, each tailored for a particular application. In high-precision spectroscopy, the measurement sensitivity is often limited by technical noise at low frequencies. The first publication shows that small phase signals at low-frequency are resolvable without increasing the laser power. We use a phase-modulated field, shifting the signal to high frequencies where technical noise is circumvented. In addition, the field is squeezed by 6 dB at high frequencies to reduce shot noise arising from quantum fluctuations. Our approach resolves sub-shot-noise signals at 100 Hz and 20 kHz on a reduced noise floor. In opto-mechanical sensors such as gravitational wave detectors, the fundamental measurement limitation arises from the combination of shot noise and quantum back-action noise induced by quantum radiation pressure noise. A conventional fixed-quadrature squeezed state generated by a resonant optical parametric oscillator (OPO) can only fight one of these two contributions simultaneously. To cancel both quantum noise contributions, a particularly frequency-dependent squeezed state is required. Our second publication shows that a detuned OPO generates frequency-dependent squeezing. It can be used as an approximate effective-negative mass oscillator in an all-optical coherent quantum noise cancellation scheme and is suitable to coherently cancel quantum noise. Our generated state, which is reconstructed by quantum tomography, rotating over megahertz frequencies, exhibits a rotation angle of 39° and a maximal squeezing degree of 5.5 dB. Two-mode squeezed quantum states are resources required in modern applications such as quantum information processing. In the third publication, we address the challenge of determining the ten independent entries of a two-mode squeezed state{\textquoteright}s covariance matrix to fully characterise the quantum state. We demonstrate a full reconstruction of a 7 dB two-mode squeezed state using only a single polarisation-sensitive homodyne detector, which avoids additional optics and potential loss channels. The findings of this thesis are relevant for experiments in high-precision quantum metrology, e.g. in spectroscopy or gravitational wave detectors operating at the standard quantum limit. The insights gained on the generating and handling non-classical states enable advances in quantum information technology.",
author = "Jonas Junker",
note = "Doctoral thesis",
year = "2023",
doi = "10.15488/13411",
language = "English",
school = "Leibniz University Hannover",

}

Download

TY - BOOK

T1 - Quantum metrology using tailored non-classical states

AU - Junker, Jonas

N1 - Doctoral thesis

PY - 2023

Y1 - 2023

N2 - Squeezed states of light play a significant role in various technologies ranging from high-precision metrology such as gravitational wave detection to quantum information.These quantum states are prepared to carry particular characteristics depending on their application. For instance, some applications require squeezing in one, others only in the combination of two distinct optical modes. Furthermore, squeezing can appear constant for all frequencies or frequency-dependently. In this thesis, novel quantum optical methods employing different, tailored non-classical light sources, are developed and described. The individual squeezed states are controlled and characterised, each tailored for a particular application. In high-precision spectroscopy, the measurement sensitivity is often limited by technical noise at low frequencies. The first publication shows that small phase signals at low-frequency are resolvable without increasing the laser power. We use a phase-modulated field, shifting the signal to high frequencies where technical noise is circumvented. In addition, the field is squeezed by 6 dB at high frequencies to reduce shot noise arising from quantum fluctuations. Our approach resolves sub-shot-noise signals at 100 Hz and 20 kHz on a reduced noise floor. In opto-mechanical sensors such as gravitational wave detectors, the fundamental measurement limitation arises from the combination of shot noise and quantum back-action noise induced by quantum radiation pressure noise. A conventional fixed-quadrature squeezed state generated by a resonant optical parametric oscillator (OPO) can only fight one of these two contributions simultaneously. To cancel both quantum noise contributions, a particularly frequency-dependent squeezed state is required. Our second publication shows that a detuned OPO generates frequency-dependent squeezing. It can be used as an approximate effective-negative mass oscillator in an all-optical coherent quantum noise cancellation scheme and is suitable to coherently cancel quantum noise. Our generated state, which is reconstructed by quantum tomography, rotating over megahertz frequencies, exhibits a rotation angle of 39° and a maximal squeezing degree of 5.5 dB. Two-mode squeezed quantum states are resources required in modern applications such as quantum information processing. In the third publication, we address the challenge of determining the ten independent entries of a two-mode squeezed state’s covariance matrix to fully characterise the quantum state. We demonstrate a full reconstruction of a 7 dB two-mode squeezed state using only a single polarisation-sensitive homodyne detector, which avoids additional optics and potential loss channels. The findings of this thesis are relevant for experiments in high-precision quantum metrology, e.g. in spectroscopy or gravitational wave detectors operating at the standard quantum limit. The insights gained on the generating and handling non-classical states enable advances in quantum information technology.

AB - Squeezed states of light play a significant role in various technologies ranging from high-precision metrology such as gravitational wave detection to quantum information.These quantum states are prepared to carry particular characteristics depending on their application. For instance, some applications require squeezing in one, others only in the combination of two distinct optical modes. Furthermore, squeezing can appear constant for all frequencies or frequency-dependently. In this thesis, novel quantum optical methods employing different, tailored non-classical light sources, are developed and described. The individual squeezed states are controlled and characterised, each tailored for a particular application. In high-precision spectroscopy, the measurement sensitivity is often limited by technical noise at low frequencies. The first publication shows that small phase signals at low-frequency are resolvable without increasing the laser power. We use a phase-modulated field, shifting the signal to high frequencies where technical noise is circumvented. In addition, the field is squeezed by 6 dB at high frequencies to reduce shot noise arising from quantum fluctuations. Our approach resolves sub-shot-noise signals at 100 Hz and 20 kHz on a reduced noise floor. In opto-mechanical sensors such as gravitational wave detectors, the fundamental measurement limitation arises from the combination of shot noise and quantum back-action noise induced by quantum radiation pressure noise. A conventional fixed-quadrature squeezed state generated by a resonant optical parametric oscillator (OPO) can only fight one of these two contributions simultaneously. To cancel both quantum noise contributions, a particularly frequency-dependent squeezed state is required. Our second publication shows that a detuned OPO generates frequency-dependent squeezing. It can be used as an approximate effective-negative mass oscillator in an all-optical coherent quantum noise cancellation scheme and is suitable to coherently cancel quantum noise. Our generated state, which is reconstructed by quantum tomography, rotating over megahertz frequencies, exhibits a rotation angle of 39° and a maximal squeezing degree of 5.5 dB. Two-mode squeezed quantum states are resources required in modern applications such as quantum information processing. In the third publication, we address the challenge of determining the ten independent entries of a two-mode squeezed state’s covariance matrix to fully characterise the quantum state. We demonstrate a full reconstruction of a 7 dB two-mode squeezed state using only a single polarisation-sensitive homodyne detector, which avoids additional optics and potential loss channels. The findings of this thesis are relevant for experiments in high-precision quantum metrology, e.g. in spectroscopy or gravitational wave detectors operating at the standard quantum limit. The insights gained on the generating and handling non-classical states enable advances in quantum information technology.

U2 - 10.15488/13411

DO - 10.15488/13411

M3 - Doctoral thesis

CY - Hannover

ER -

Von denselben Autoren