Quantum Enhanced Balanced Heterodyne Readout for Differential Interferometry

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Daniel W. Gould
  • Vaishali B. Adya
  • Sheon S.Y. Chua
  • Jonas Junker
  • Dennis Wilken
  • Terry G. McRae
  • Bram J.J. Slagmolen
  • Min Jet Yap
  • Robert L. Ward
  • Michèle Heurs
  • David E. McClelland

Organisationseinheiten

Externe Organisationen

  • Australian National University
  • Royal Institute of Technology (KTH)
  • Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Aufsatznummer063602
Seitenumfang7
FachzeitschriftPhysical review letters
Jahrgang133
Ausgabenummer6
PublikationsstatusVeröffentlicht - 8 Aug. 2024

Abstract

Conventional heterodyne readout schemes are now under reconsideration due to the realization of techniques to evade its inherent 3 dB signal-to-noise penalty. The application of high-frequency, quadrature-entangled, two-mode squeezed states can further improve the readout sensitivity of audio-band signals. In this Letter, we experimentally demonstrate quantum-enhanced heterodyne readout of two spatially distinct interferometers with direct optical signal combination, circumventing the 3 dB heterodyne signal-to-noise penalty. Applying a high-frequency, quadrature-entangled, two-mode squeezed state, we show further signal-to-noise improvement of an injected audio band signal of 3.5 dB. This technique is applicable for quantum-limited high-precision experiments, with application to searches for quantum gravity, searches for dark matter, gravitational wave detection, and wavelength-multiplexed quantum communication.

ASJC Scopus Sachgebiete

Zitieren

Quantum Enhanced Balanced Heterodyne Readout for Differential Interferometry. / Gould, Daniel W.; Adya, Vaishali B.; Chua, Sheon S.Y. et al.
in: Physical review letters, Jahrgang 133, Nr. 6, 063602, 08.08.2024.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Gould, DW, Adya, VB, Chua, SSY, Junker, J, Wilken, D, McRae, TG, Slagmolen, BJJ, Yap, MJ, Ward, RL, Heurs, M & McClelland, DE 2024, 'Quantum Enhanced Balanced Heterodyne Readout for Differential Interferometry', Physical review letters, Jg. 133, Nr. 6, 063602. https://doi.org/10.48550/arXiv.2401.04940, https://doi.org/10.1103/PhysRevLett.133.063602
Gould, D. W., Adya, V. B., Chua, S. S. Y., Junker, J., Wilken, D., McRae, T. G., Slagmolen, B. J. J., Yap, M. J., Ward, R. L., Heurs, M., & McClelland, D. E. (2024). Quantum Enhanced Balanced Heterodyne Readout for Differential Interferometry. Physical review letters, 133(6), Artikel 063602. https://doi.org/10.48550/arXiv.2401.04940, https://doi.org/10.1103/PhysRevLett.133.063602
Gould DW, Adya VB, Chua SSY, Junker J, Wilken D, McRae TG et al. Quantum Enhanced Balanced Heterodyne Readout for Differential Interferometry. Physical review letters. 2024 Aug 8;133(6):063602. doi: 10.48550/arXiv.2401.04940, 10.1103/PhysRevLett.133.063602
Gould, Daniel W. ; Adya, Vaishali B. ; Chua, Sheon S.Y. et al. / Quantum Enhanced Balanced Heterodyne Readout for Differential Interferometry. in: Physical review letters. 2024 ; Jahrgang 133, Nr. 6.
Download
@article{45e1f023beb941c8b9bbc6e958d0faf8,
title = "Quantum Enhanced Balanced Heterodyne Readout for Differential Interferometry",
abstract = "Conventional heterodyne readout schemes are now under reconsideration due to the realization of techniques to evade its inherent 3 dB signal-to-noise penalty. The application of high-frequency, quadrature-entangled, two-mode squeezed states can further improve the readout sensitivity of audio-band signals. In this Letter, we experimentally demonstrate quantum-enhanced heterodyne readout of two spatially distinct interferometers with direct optical signal combination, circumventing the 3 dB heterodyne signal-to-noise penalty. Applying a high-frequency, quadrature-entangled, two-mode squeezed state, we show further signal-to-noise improvement of an injected audio band signal of 3.5 dB. This technique is applicable for quantum-limited high-precision experiments, with application to searches for quantum gravity, searches for dark matter, gravitational wave detection, and wavelength-multiplexed quantum communication.",
author = "Gould, {Daniel W.} and Adya, {Vaishali B.} and Chua, {Sheon S.Y.} and Jonas Junker and Dennis Wilken and McRae, {Terry G.} and Slagmolen, {Bram J.J.} and Yap, {Min Jet} and Ward, {Robert L.} and Mich{\`e}le Heurs and McClelland, {David E.}",
note = "Publisher Copyright: {\textcopyright} 2024 American Physical Society.",
year = "2024",
month = aug,
day = "8",
doi = "10.48550/arXiv.2401.04940",
language = "English",
volume = "133",
journal = "Physical review letters",
issn = "0031-9007",
publisher = "American Physical Society",
number = "6",

}

Download

TY - JOUR

T1 - Quantum Enhanced Balanced Heterodyne Readout for Differential Interferometry

AU - Gould, Daniel W.

AU - Adya, Vaishali B.

AU - Chua, Sheon S.Y.

AU - Junker, Jonas

AU - Wilken, Dennis

AU - McRae, Terry G.

AU - Slagmolen, Bram J.J.

AU - Yap, Min Jet

AU - Ward, Robert L.

AU - Heurs, Michèle

AU - McClelland, David E.

N1 - Publisher Copyright: © 2024 American Physical Society.

PY - 2024/8/8

Y1 - 2024/8/8

N2 - Conventional heterodyne readout schemes are now under reconsideration due to the realization of techniques to evade its inherent 3 dB signal-to-noise penalty. The application of high-frequency, quadrature-entangled, two-mode squeezed states can further improve the readout sensitivity of audio-band signals. In this Letter, we experimentally demonstrate quantum-enhanced heterodyne readout of two spatially distinct interferometers with direct optical signal combination, circumventing the 3 dB heterodyne signal-to-noise penalty. Applying a high-frequency, quadrature-entangled, two-mode squeezed state, we show further signal-to-noise improvement of an injected audio band signal of 3.5 dB. This technique is applicable for quantum-limited high-precision experiments, with application to searches for quantum gravity, searches for dark matter, gravitational wave detection, and wavelength-multiplexed quantum communication.

AB - Conventional heterodyne readout schemes are now under reconsideration due to the realization of techniques to evade its inherent 3 dB signal-to-noise penalty. The application of high-frequency, quadrature-entangled, two-mode squeezed states can further improve the readout sensitivity of audio-band signals. In this Letter, we experimentally demonstrate quantum-enhanced heterodyne readout of two spatially distinct interferometers with direct optical signal combination, circumventing the 3 dB heterodyne signal-to-noise penalty. Applying a high-frequency, quadrature-entangled, two-mode squeezed state, we show further signal-to-noise improvement of an injected audio band signal of 3.5 dB. This technique is applicable for quantum-limited high-precision experiments, with application to searches for quantum gravity, searches for dark matter, gravitational wave detection, and wavelength-multiplexed quantum communication.

UR - http://www.scopus.com/inward/record.url?scp=85200914768&partnerID=8YFLogxK

U2 - 10.48550/arXiv.2401.04940

DO - 10.48550/arXiv.2401.04940

M3 - Article

C2 - 39178444

AN - SCOPUS:85200914768

VL - 133

JO - Physical review letters

JF - Physical review letters

SN - 0031-9007

IS - 6

M1 - 063602

ER -

Von denselben Autoren