Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 102-112 |
Seitenumfang | 11 |
Fachzeitschrift | Quantum Information and Computation |
Jahrgang | 5 |
Ausgabenummer | 2 |
Publikationsstatus | Veröffentlicht - März 2005 |
Extern publiziert | Ja |
Abstract
What is the computational power of a quantum computer? We show that determining the output of a quantum computation is equivalent to counting the number of solutions to an easily computed set of polynomials denned over the finite field Z2. This connection allows simple proofs to be given for two known relationships between quantum and classical complexity classes, namely BQP ⊆P#P and BQP ⊆PP.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Theoretische Informatik
- Physik und Astronomie (insg.)
- Statistische und nichtlineare Physik
- Physik und Astronomie (insg.)
- Kern- und Hochenergiephysik
- Mathematik (insg.)
- Mathematische Physik
- Physik und Astronomie (insg.)
- Allgemeine Physik und Astronomie
- Informatik (insg.)
- Theoretische Informatik und Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Quantum Information and Computation, Jahrgang 5, Nr. 2, 03.2005, S. 102-112.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Quantum computing and polynomial equations over the finite field Z 2
AU - Dawson, Christopher M.
AU - Hines, Andrew P.
AU - Mortimer, Duncan
AU - Haselgrove, Henry L.
AU - Nielsen, Michael A.
AU - Osborne, Tobias J.
N1 - Copyright: Copyright 2005 Elsevier B.V., All rights reserved.
PY - 2005/3
Y1 - 2005/3
N2 - What is the computational power of a quantum computer? We show that determining the output of a quantum computation is equivalent to counting the number of solutions to an easily computed set of polynomials denned over the finite field Z2. This connection allows simple proofs to be given for two known relationships between quantum and classical complexity classes, namely BQP ⊆P#P and BQP ⊆PP.
AB - What is the computational power of a quantum computer? We show that determining the output of a quantum computation is equivalent to counting the number of solutions to an easily computed set of polynomials denned over the finite field Z2. This connection allows simple proofs to be given for two known relationships between quantum and classical complexity classes, namely BQP ⊆P#P and BQP ⊆PP.
KW - Complexity
KW - Computing
KW - Polynomials
KW - Quantum
UR - http://www.scopus.com/inward/record.url?scp=16244411647&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:16244411647
VL - 5
SP - 102
EP - 112
JO - Quantum Information and Computation
JF - Quantum Information and Computation
SN - 1533-7146
IS - 2
ER -