Quantum Backaction on kg-Scale Mirrors: Observation of Radiation Pressure Noise in the Advanced Virgo Detector

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Virgo Collaboration
  • H. Vahlbruch
  • H. Lück
  • K. Danzmann
  • Moritz Mehmet

Externe Organisationen

  • Universita di Salerno
  • Università degli Studi di Napoli Federico II
  • Friedrich-Schiller-Universität Jena
  • Gran Sasso Science Institute
  • Istituto Nazionale di Fisica Nucleare (INFN)
  • Sezione di Pisa
  • University of Pisa
  • Université Claude Bernard Lyon 1
  • University of Udine
  • Centre national de la recherche scientifique (CNRS)
  • Universität Paris-Saclay
  • European Gravitational Observatory (EGO)
  • Université Grenoble Alpes (UGA)
  • Nationaal instituut voor subatomaire fysica (Nikhef)
  • Université de Liège
  • Università degli Studi di Milano-Bicocca (UNIMIB)
  • Osservatorio Astronomico di Brera
  • Universitat de Barcelona (UB)
  • Hungarian Academy of Sciences
  • University of Perugia
  • Università degli Studi di Padova
  • Sezione di Padova
  • Instytut Chemii Bioorganicznej Polskiej Akademii Nauk
  • Sezione di Genova
  • Universität Urbino „Carlo Bo“
  • Università degli Studi di Firenze (UniFi)
  • Université Côte d'Azur
  • Institució Catalana de Recerca i Estudis Avançats (ICREA)
  • Sapienza Università di Roma
  • Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Aufsatznummer131101
FachzeitschriftPhysical review letters
Jahrgang125
Ausgabenummer13
PublikationsstatusVeröffentlicht - 22 Sept. 2020

Abstract

The quantum radiation pressure and the quantum shot noise in laser-interferometric gravitational wave detectors constitute a macroscopic manifestation of the Heisenberg inequality. If quantum shot noise can be easily observed, the observation of quantum radiation pressure noise has been elusive, so far, due to the technical noise competing with quantum effects. Here, we discuss the evidence of quantum radiation pressure noise in the Advanced Virgo gravitational wave detector. In our experiment, we inject squeezed vacuum states of light into the interferometer in order to manipulate the quantum backaction on the 42 kg mirrors and observe the corresponding quantum noise driven displacement at frequencies between 30 and 70 Hz. The experimental data, obtained in various interferometer configurations, is tested against the Advanced Virgo detector quantum noise model which confirmed the measured magnitude of quantum radiation pressure noise.

ASJC Scopus Sachgebiete

Zitieren

Quantum Backaction on kg-Scale Mirrors: Observation of Radiation Pressure Noise in the Advanced Virgo Detector. / Virgo Collaboration; Vahlbruch, H.; Lück, H. et al.
in: Physical review letters, Jahrgang 125, Nr. 13, 131101, 22.09.2020.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Virgo Collaboration, Vahlbruch H, Lück H, Danzmann K, Mehmet M. Quantum Backaction on kg-Scale Mirrors: Observation of Radiation Pressure Noise in the Advanced Virgo Detector. Physical review letters. 2020 Sep 22;125(13):131101. doi: 10.1103/PhysRevLett.125.131101
Virgo Collaboration ; Vahlbruch, H. ; Lück, H. et al. / Quantum Backaction on kg-Scale Mirrors: Observation of Radiation Pressure Noise in the Advanced Virgo Detector. in: Physical review letters. 2020 ; Jahrgang 125, Nr. 13.
Download
@article{3ef57d93170a45908414c2c9bf447991,
title = "Quantum Backaction on kg-Scale Mirrors: Observation of Radiation Pressure Noise in the Advanced Virgo Detector",
abstract = "The quantum radiation pressure and the quantum shot noise in laser-interferometric gravitational wave detectors constitute a macroscopic manifestation of the Heisenberg inequality. If quantum shot noise can be easily observed, the observation of quantum radiation pressure noise has been elusive, so far, due to the technical noise competing with quantum effects. Here, we discuss the evidence of quantum radiation pressure noise in the Advanced Virgo gravitational wave detector. In our experiment, we inject squeezed vacuum states of light into the interferometer in order to manipulate the quantum backaction on the 42 kg mirrors and observe the corresponding quantum noise driven displacement at frequencies between 30 and 70 Hz. The experimental data, obtained in various interferometer configurations, is tested against the Advanced Virgo detector quantum noise model which confirmed the measured magnitude of quantum radiation pressure noise.",
author = "{The Virgo Collaboration} and F. Acernese and M. Agathos and L. Aiello and A. Ain and A. Allocca and A. Amato and S. Ansoldi and S. Antier and M. Ar{\`e}ne and N. Arnaud and S. Ascenzi and P. Astone and F. Aubin and S. Babak and F. Badaracco and Bader, {M. K.M.} and S. Bagnasco and J. Baird and G. Ballardin and G. Baltus and C. Barbieri and P. Barneo and F. Barone and M. Barsuglia and D. Barta and A. Basti and M. Bawaj and M. Bazzan and M. Bejger and I. Belahcene and S. Bernuzzi and D. Bersanetti and A. Bertolini and M. Bischi and M. Bitossi and Bizouard, {M. A.} and O. Blanch and F. Bobba and M. Boer and G. Bogaert and M. Boldrini and F. Bondu and R. Bonnand and Boom, {B. A.} and V. Boschi and V. Boudart and Y. Bouffanais and H. Vahlbruch and H. L{\"u}ck and K. Danzmann and Moritz Mehmet",
note = "Funding Information: The authors gratefully acknowledge the support of the Max Planck Society, Leibniz Universit{\"a}t Hannover, and Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through Grant No. VA 1031/1-1 and Germany{\textquoteright}s Excellence Strategy Grant No. EXC-2123 QuantumFrontiers—390837967 for the construction, installation, and operation of the squeezed light source. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS), and the Netherlands Organization for Scientific Research, for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Spanish Agencia Estatal de Investigaci{\'o}n, the Consellera d{\textquoteright}Innovaci{\'o}, Universitats, Ci{\`e}ncia i Societat Digital de la Generalitat Valenciana and the CERCA Programme Generalitat de Catalunya, Spain, the National Science Centre of Poland, the European Commission, the Hungarian Scientific Research Fund (OTKA), the French Lyon Institute of Origins (LIO), the Belgian Fonds de la Recherche Scientifique (FRS-FNRS), Actions de Recherche Concertes (ARC), and Fonds Wetenschappelijk Onderzoek Vlaanderen (FWO), Belgium. Finally the authors kindly thank S. Danilishin for useful discussions on the quantum noise model of the interferometer.",
year = "2020",
month = sep,
day = "22",
doi = "10.1103/PhysRevLett.125.131101",
language = "English",
volume = "125",
journal = "Physical review letters",
issn = "0031-9007",
publisher = "American Physical Society",
number = "13",

}

Download

TY - JOUR

T1 - Quantum Backaction on kg-Scale Mirrors: Observation of Radiation Pressure Noise in the Advanced Virgo Detector

AU - The Virgo Collaboration

AU - Acernese, F.

AU - Agathos, M.

AU - Aiello, L.

AU - Ain, A.

AU - Allocca, A.

AU - Amato, A.

AU - Ansoldi, S.

AU - Antier, S.

AU - Arène, M.

AU - Arnaud, N.

AU - Ascenzi, S.

AU - Astone, P.

AU - Aubin, F.

AU - Babak, S.

AU - Badaracco, F.

AU - Bader, M. K.M.

AU - Bagnasco, S.

AU - Baird, J.

AU - Ballardin, G.

AU - Baltus, G.

AU - Barbieri, C.

AU - Barneo, P.

AU - Barone, F.

AU - Barsuglia, M.

AU - Barta, D.

AU - Basti, A.

AU - Bawaj, M.

AU - Bazzan, M.

AU - Bejger, M.

AU - Belahcene, I.

AU - Bernuzzi, S.

AU - Bersanetti, D.

AU - Bertolini, A.

AU - Bischi, M.

AU - Bitossi, M.

AU - Bizouard, M. A.

AU - Blanch, O.

AU - Bobba, F.

AU - Boer, M.

AU - Bogaert, G.

AU - Boldrini, M.

AU - Bondu, F.

AU - Bonnand, R.

AU - Boom, B. A.

AU - Boschi, V.

AU - Boudart, V.

AU - Bouffanais, Y.

AU - Vahlbruch, H.

AU - Lück, H.

AU - Danzmann, K.

AU - Mehmet, Moritz

N1 - Funding Information: The authors gratefully acknowledge the support of the Max Planck Society, Leibniz Universität Hannover, and Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through Grant No. VA 1031/1-1 and Germany’s Excellence Strategy Grant No. EXC-2123 QuantumFrontiers—390837967 for the construction, installation, and operation of the squeezed light source. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS), and the Netherlands Organization for Scientific Research, for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Spanish Agencia Estatal de Investigación, the Consellera d’Innovació, Universitats, Ciència i Societat Digital de la Generalitat Valenciana and the CERCA Programme Generalitat de Catalunya, Spain, the National Science Centre of Poland, the European Commission, the Hungarian Scientific Research Fund (OTKA), the French Lyon Institute of Origins (LIO), the Belgian Fonds de la Recherche Scientifique (FRS-FNRS), Actions de Recherche Concertes (ARC), and Fonds Wetenschappelijk Onderzoek Vlaanderen (FWO), Belgium. Finally the authors kindly thank S. Danilishin for useful discussions on the quantum noise model of the interferometer.

PY - 2020/9/22

Y1 - 2020/9/22

N2 - The quantum radiation pressure and the quantum shot noise in laser-interferometric gravitational wave detectors constitute a macroscopic manifestation of the Heisenberg inequality. If quantum shot noise can be easily observed, the observation of quantum radiation pressure noise has been elusive, so far, due to the technical noise competing with quantum effects. Here, we discuss the evidence of quantum radiation pressure noise in the Advanced Virgo gravitational wave detector. In our experiment, we inject squeezed vacuum states of light into the interferometer in order to manipulate the quantum backaction on the 42 kg mirrors and observe the corresponding quantum noise driven displacement at frequencies between 30 and 70 Hz. The experimental data, obtained in various interferometer configurations, is tested against the Advanced Virgo detector quantum noise model which confirmed the measured magnitude of quantum radiation pressure noise.

AB - The quantum radiation pressure and the quantum shot noise in laser-interferometric gravitational wave detectors constitute a macroscopic manifestation of the Heisenberg inequality. If quantum shot noise can be easily observed, the observation of quantum radiation pressure noise has been elusive, so far, due to the technical noise competing with quantum effects. Here, we discuss the evidence of quantum radiation pressure noise in the Advanced Virgo gravitational wave detector. In our experiment, we inject squeezed vacuum states of light into the interferometer in order to manipulate the quantum backaction on the 42 kg mirrors and observe the corresponding quantum noise driven displacement at frequencies between 30 and 70 Hz. The experimental data, obtained in various interferometer configurations, is tested against the Advanced Virgo detector quantum noise model which confirmed the measured magnitude of quantum radiation pressure noise.

UR - http://www.scopus.com/inward/record.url?scp=85092802918&partnerID=8YFLogxK

U2 - 10.1103/PhysRevLett.125.131101

DO - 10.1103/PhysRevLett.125.131101

M3 - Article

C2 - 33034506

AN - SCOPUS:85092802918

VL - 125

JO - Physical review letters

JF - Physical review letters

SN - 0031-9007

IS - 13

M1 - 131101

ER -