Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 368-382 |
Seitenumfang | 15 |
Fachzeitschrift | Plant Journal |
Jahrgang | 47 |
Ausgabenummer | 3 |
Publikationsstatus | Veröffentlicht - 22 Juni 2006 |
Extern publiziert | Ja |
Abstract
The virulence and avirulence activities of members of the Pseudomonas syringae HopAB family of effectors and AvrPto were examined in bean, tomato and Arabidopsis. Proteins were delivered by the RW60 strain of P. syringae pv. phaseolicola. RW60 causes a hypersensitive reaction (HR) in bean and tomato but is restricted without the HR in Arabidopsis. Dual avirulence and virulence functions in tomato and bean, respectively, were identified in virPphA homologues but only avrPtoB strongly enhanced virulence to Arabidopsis, overcoming basal defences operating against RW60. Virulence activity in both bean and Arabidopsis required regions of the C-terminus of the AvrPtoB protein, whereas elicitation of the rapid HR in tomato, with the matching Pto resistance gene, did not. The effect of AvrPtoB on Arabidopsis was accession-specific; most obvious in Wassilewskija (Ws-3), intermediate in Columbia and not detectable in Niedersenz (Nd-1) after inoculation with RW60 + avrPtoB. Analysis of crosses between Ws-3 and Nd-1 indicated co-segregation for the AvrPtoB virulence function with the absence of the Nd-1 FLS2 gene which mediates recognition of bacterial flagellin. In planta expression of AvrPtoB did not prevent the HR activated by P. syringae pv. tomato DC3000 + avrB, avrRpm1, avrRps4 or avrRpt2, but suppressed cell wall alterations, including callose deposition, characteristic of basal defence and was associated with reprogramming of the plant's transcriptional response. The success or failure of AvrPtoB in suppressing basal defences in Nd-1 depended on the timing of exposure of plant cells to the effector and the flagellin flg22 peptide.
ASJC Scopus Sachgebiete
- Biochemie, Genetik und Molekularbiologie (insg.)
- Genetik
- Agrar- und Biowissenschaften (insg.)
- Pflanzenkunde
- Biochemie, Genetik und Molekularbiologie (insg.)
- Zellbiologie
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Plant Journal, Jahrgang 47, Nr. 3, 22.06.2006, S. 368-382.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Pseudomonas syringae effector AvrPtoB suppresses basal defence in Arabidopsis
AU - De Torres, Marta
AU - Mansfield, John W.
AU - Grabov, Nina
AU - Brown, Ian R.
AU - Ammouneh, Hassan
AU - Tsiamis, George
AU - Forsyth, Alec
AU - Robatzek, Silke
AU - Grant, Murray
AU - Boch, Jens
N1 - Besitzt Korrektur; DOI: 10.1111/j.1365-313X.2006.02929.x
PY - 2006/6/22
Y1 - 2006/6/22
N2 - The virulence and avirulence activities of members of the Pseudomonas syringae HopAB family of effectors and AvrPto were examined in bean, tomato and Arabidopsis. Proteins were delivered by the RW60 strain of P. syringae pv. phaseolicola. RW60 causes a hypersensitive reaction (HR) in bean and tomato but is restricted without the HR in Arabidopsis. Dual avirulence and virulence functions in tomato and bean, respectively, were identified in virPphA homologues but only avrPtoB strongly enhanced virulence to Arabidopsis, overcoming basal defences operating against RW60. Virulence activity in both bean and Arabidopsis required regions of the C-terminus of the AvrPtoB protein, whereas elicitation of the rapid HR in tomato, with the matching Pto resistance gene, did not. The effect of AvrPtoB on Arabidopsis was accession-specific; most obvious in Wassilewskija (Ws-3), intermediate in Columbia and not detectable in Niedersenz (Nd-1) after inoculation with RW60 + avrPtoB. Analysis of crosses between Ws-3 and Nd-1 indicated co-segregation for the AvrPtoB virulence function with the absence of the Nd-1 FLS2 gene which mediates recognition of bacterial flagellin. In planta expression of AvrPtoB did not prevent the HR activated by P. syringae pv. tomato DC3000 + avrB, avrRpm1, avrRps4 or avrRpt2, but suppressed cell wall alterations, including callose deposition, characteristic of basal defence and was associated with reprogramming of the plant's transcriptional response. The success or failure of AvrPtoB in suppressing basal defences in Nd-1 depended on the timing of exposure of plant cells to the effector and the flagellin flg22 peptide.
AB - The virulence and avirulence activities of members of the Pseudomonas syringae HopAB family of effectors and AvrPto were examined in bean, tomato and Arabidopsis. Proteins were delivered by the RW60 strain of P. syringae pv. phaseolicola. RW60 causes a hypersensitive reaction (HR) in bean and tomato but is restricted without the HR in Arabidopsis. Dual avirulence and virulence functions in tomato and bean, respectively, were identified in virPphA homologues but only avrPtoB strongly enhanced virulence to Arabidopsis, overcoming basal defences operating against RW60. Virulence activity in both bean and Arabidopsis required regions of the C-terminus of the AvrPtoB protein, whereas elicitation of the rapid HR in tomato, with the matching Pto resistance gene, did not. The effect of AvrPtoB on Arabidopsis was accession-specific; most obvious in Wassilewskija (Ws-3), intermediate in Columbia and not detectable in Niedersenz (Nd-1) after inoculation with RW60 + avrPtoB. Analysis of crosses between Ws-3 and Nd-1 indicated co-segregation for the AvrPtoB virulence function with the absence of the Nd-1 FLS2 gene which mediates recognition of bacterial flagellin. In planta expression of AvrPtoB did not prevent the HR activated by P. syringae pv. tomato DC3000 + avrB, avrRpm1, avrRps4 or avrRpt2, but suppressed cell wall alterations, including callose deposition, characteristic of basal defence and was associated with reprogramming of the plant's transcriptional response. The success or failure of AvrPtoB in suppressing basal defences in Nd-1 depended on the timing of exposure of plant cells to the effector and the flagellin flg22 peptide.
KW - Bacterial pathogenicity
KW - Effector proteins
KW - Innate immunity
KW - Plant disease resistance
UR - http://www.scopus.com/inward/record.url?scp=33745822814&partnerID=8YFLogxK
U2 - 10.1111/j.1365-313X.2006.02798.x
DO - 10.1111/j.1365-313X.2006.02798.x
M3 - Article
C2 - 16792692
AN - SCOPUS:33745822814
VL - 47
SP - 368
EP - 382
JO - Plant Journal
JF - Plant Journal
SN - 0960-7412
IS - 3
ER -