Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 60-65 |
Seitenumfang | 6 |
Fachzeitschrift | American Mathematical Monthly |
Jahrgang | 126 |
Ausgabenummer | 1 |
Publikationsstatus | Veröffentlicht - 2 Jan. 2019 |
Extern publiziert | Ja |
Abstract
One part of Sylow’s famous theorem in group theory states that the number of Sylow p-subgroups of a finite group is always congruent to 1 modulo p. Conversely, Marshall Hall has shown that not every positive integer n≡1(mod p) occurs as the number of Sylow p-subgroups of some finite group. While Hall’s proof relies on deep knowledge of modular representation theory, we show by elementary means that no finite group has exactly 35 Sylow 17-subgroups.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Allgemeine Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: American Mathematical Monthly, Jahrgang 126, Nr. 1, 02.01.2019, S. 60-65.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Pseudo Sylow Numbers
AU - Sambale, Benjamin
N1 - Funding information: author is supported by the German Research Foundation (project SA
PY - 2019/1/2
Y1 - 2019/1/2
N2 - One part of Sylow’s famous theorem in group theory states that the number of Sylow p-subgroups of a finite group is always congruent to 1 modulo p. Conversely, Marshall Hall has shown that not every positive integer n≡1(mod p) occurs as the number of Sylow p-subgroups of some finite group. While Hall’s proof relies on deep knowledge of modular representation theory, we show by elementary means that no finite group has exactly 35 Sylow 17-subgroups.
AB - One part of Sylow’s famous theorem in group theory states that the number of Sylow p-subgroups of a finite group is always congruent to 1 modulo p. Conversely, Marshall Hall has shown that not every positive integer n≡1(mod p) occurs as the number of Sylow p-subgroups of some finite group. While Hall’s proof relies on deep knowledge of modular representation theory, we show by elementary means that no finite group has exactly 35 Sylow 17-subgroups.
KW - MSC: Primary 20D20
UR - http://www.scopus.com/inward/record.url?scp=85060884558&partnerID=8YFLogxK
U2 - 10.1080/00029890.2019.1528825
DO - 10.1080/00029890.2019.1528825
M3 - Article
AN - SCOPUS:85060884558
VL - 126
SP - 60
EP - 65
JO - American Mathematical Monthly
JF - American Mathematical Monthly
SN - 0002-9890
IS - 1
ER -