Pseudo Frobenius numbers

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Benjamin Sambale

Externe Organisationen

  • Technische Universität Kaiserslautern
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)200-206
Seitenumfang7
FachzeitschriftExpositiones mathematicae
Jahrgang37
Ausgabenummer2
Frühes Online-Datum25 Okt. 2018
PublikationsstatusVeröffentlicht - Juni 2019
Extern publiziertJa

Abstract

For a prime p, we call a positive integer n a Frobenius p-number if there exists a finite group with exactly n subgroups of order pa for some a≥0. Extending previous results on Sylow's theorem, we prove in this paper that every Frobenius p-number [Formula presented] is a Sylow p-number, i. e., the number of Sylow p-subgroups of some finite group. As a consequence, we verify that 46 is a pseudo Frobenius 3-number, that is, no finite group has exactly 46 subgroups of order 3a for any a≥0.

ASJC Scopus Sachgebiete

Zitieren

Pseudo Frobenius numbers. / Sambale, Benjamin.
in: Expositiones mathematicae, Jahrgang 37, Nr. 2, 06.2019, S. 200-206.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Sambale B. Pseudo Frobenius numbers. Expositiones mathematicae. 2019 Jun;37(2):200-206. Epub 2018 Okt 25. doi: 10.1016/j.exmath.2018.10.003
Sambale, Benjamin. / Pseudo Frobenius numbers. in: Expositiones mathematicae. 2019 ; Jahrgang 37, Nr. 2. S. 200-206.
Download
@article{78850dd36e0842f89d3aec62b87cb499,
title = "Pseudo Frobenius numbers",
abstract = "For a prime p, we call a positive integer n a Frobenius p-number if there exists a finite group with exactly n subgroups of order pa for some a≥0. Extending previous results on Sylow's theorem, we prove in this paper that every Frobenius p-number [Formula presented] is a Sylow p-number, i. e., the number of Sylow p-subgroups of some finite group. As a consequence, we verify that 46 is a pseudo Frobenius 3-number, that is, no finite group has exactly 46 subgroups of order 3a for any a≥0.",
keywords = "Frobenius{\textquoteright} theorem, Number of p-subgroups, Sylow's theorem",
author = "Benjamin Sambale",
note = "Funding information: The author thanks the anonymous reviewer for pointing out a missing argument in the proof of Theorem A . This work is supported by the German Research Foundation (projects SA 2864/1-1 and SA 2864/3-1 ).",
year = "2019",
month = jun,
doi = "10.1016/j.exmath.2018.10.003",
language = "English",
volume = "37",
pages = "200--206",
journal = "Expositiones mathematicae",
issn = "0723-0869",
publisher = "Urban und Fischer Verlag Jena",
number = "2",

}

Download

TY - JOUR

T1 - Pseudo Frobenius numbers

AU - Sambale, Benjamin

N1 - Funding information: The author thanks the anonymous reviewer for pointing out a missing argument in the proof of Theorem A . This work is supported by the German Research Foundation (projects SA 2864/1-1 and SA 2864/3-1 ).

PY - 2019/6

Y1 - 2019/6

N2 - For a prime p, we call a positive integer n a Frobenius p-number if there exists a finite group with exactly n subgroups of order pa for some a≥0. Extending previous results on Sylow's theorem, we prove in this paper that every Frobenius p-number [Formula presented] is a Sylow p-number, i. e., the number of Sylow p-subgroups of some finite group. As a consequence, we verify that 46 is a pseudo Frobenius 3-number, that is, no finite group has exactly 46 subgroups of order 3a for any a≥0.

AB - For a prime p, we call a positive integer n a Frobenius p-number if there exists a finite group with exactly n subgroups of order pa for some a≥0. Extending previous results on Sylow's theorem, we prove in this paper that every Frobenius p-number [Formula presented] is a Sylow p-number, i. e., the number of Sylow p-subgroups of some finite group. As a consequence, we verify that 46 is a pseudo Frobenius 3-number, that is, no finite group has exactly 46 subgroups of order 3a for any a≥0.

KW - Frobenius’ theorem

KW - Number of p-subgroups

KW - Sylow's theorem

UR - http://www.scopus.com/inward/record.url?scp=85056670470&partnerID=8YFLogxK

U2 - 10.1016/j.exmath.2018.10.003

DO - 10.1016/j.exmath.2018.10.003

M3 - Article

AN - SCOPUS:85056670470

VL - 37

SP - 200

EP - 206

JO - Expositiones mathematicae

JF - Expositiones mathematicae

SN - 0723-0869

IS - 2

ER -