Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 1 |
Fachzeitschrift | Living reviews in relativity |
Jahrgang | 19 |
Ausgabenummer | 1 |
Frühes Online-Datum | 8 Feb. 2016 |
Publikationsstatus | Veröffentlicht - Dez. 2016 |
Abstract
We present possible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron star systems, which are the most promising targets for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and [Formula: see text] credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5-[Formula: see text] requires at least three detectors of sensitivity within a factor of [Formula: see text] of each other and with a broad frequency bandwidth. When all detectors, including KAGRA and the third LIGO detector in India, reach design sensitivity, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.
ASJC Scopus Sachgebiete
- Physik und Astronomie (insg.)
- Physik und Astronomie (sonstige)
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Living reviews in relativity, Jahrgang 19, Nr. 1, 12.2016, S. 1.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo
AU - The LIGO Scientific Collaboration
AU - The Virgo Collaboration
AU - Abbott, B. P.
AU - Abbott, R.
AU - Abbott, T. D.
AU - Abernathy, Matthew R.
AU - Acernese, F.
AU - Ackley, K.
AU - Adams, C.
AU - Adams, T.
AU - Addesso, P.
AU - Adhikari, R. X.
AU - Adya, V. B.
AU - Affeldt, C.
AU - Agathos, M.
AU - Agatsuma, K.
AU - Aggarwal, N.
AU - Aguiar, O. D.
AU - Aiello, L.
AU - Ain, A.
AU - Ajith, P.
AU - Bose, S.
AU - Chen, Y.
AU - Cheng, H. P.
AU - Danilishin, S. L.
AU - Danzmann, Karsten
AU - Hanke, M. M.
AU - Hennig, J.
AU - Heurs, Michele
AU - Lee, H. K.
AU - Lück, Harald
AU - Nguyen, T. T.
AU - Schmidt, E.
AU - Schmidt, James E.
AU - Schmidt, P.
AU - Steinmeyer, D.
AU - Sun, L.
AU - Vahlbruch, H.
AU - Wang, M.
AU - Wang, Y.
AU - Wei, L.-W.
AU - Willke, B.
AU - Wittel, H.
AU - Zhang, L.
AU - Zhang, Y.
AU - Zhou, M.
AU - Brown, D. D.
AU - Kim, H.
AU - Aufmuth, P.
AU - Bergmann, G.
AU - Bisht, A.
AU - Bode, Nina
AU - Booker, P.
AU - Brinkmann, M.
AU - Cabero, M.
AU - Dent, T.
AU - Doravari, S.
AU - Hochheim, S.
AU - Junker, J.
AU - Karvinen, Kai S.
AU - Kaufer, Stefan
AU - Khan, S.
AU - Kirchhoff, R.
AU - Koch, P.
AU - Köhlenbeck, S. M.
AU - Koper, N.
AU - Kringel, V.
AU - Kuehn, G.
AU - Leavey, S.
AU - Lehmann, J.
AU - Lough, J. D.
AU - Mehmet, M.
AU - Mukherjee, Arunava
AU - Nery, M.
AU - Ohme, F.
AU - Oppermann, P.
AU - Phelps, M.
AU - Puncken, O.
AU - Rüdiger, A.
AU - Schreiber, E.
AU - Schulte, B. W.
AU - Setyawati, Y.
AU - Standke, M.
AU - Steinke, M.
AU - Thies, F.
AU - Weinert, M.
AU - Wellmann, F.
AU - Weßels, Peter
AU - Wilken, D.
AU - Wimmer, M.
AU - Winkler, W.
AU - Woehler, J.
AU - Wu, D. S.
AU - Sawadsky, Andreas
AU - Schuette, D.
AU - Allen, B.
AU - Denker, Timo
AU - Krueger, C.
N1 - Funding Information: International Center for Theoretical Physics South American Institute for Fundamental Research (ICTP-SAIFR), the Research Grants Council of Hong Kong, the National Natural Science Foundation of China (NSFC), the Leverhulme Trust, the Research Corporation, the Ministry of Science and Technology (MOST), Taiwan and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, MPS, INFN, CNRS and the State of Niedersachsen/Germany for provision of computational resources. The authors gratefully acknowledge the support in Japan by MEXT, JSPS Leading-edge Research Infrastructure Program, JSPS Grant-in-Aid for Specially Promoted Research 26000005, MEXT Grant-in-Aid for Scientific Research on Innovative Areas 24103005, JSPS Core-to-Core Program, A. Advanced Research Networks, the joint research program of the Institute for Cosmic Ray Research, University of Tokyo, and Computing Infrastructure Project of KISTI-GSDC in Korea. This article has been assigned LIGO Document number P1200087, Virgo Document number VIR-0288A-12, and KAGRA Document number JGW-P1706792.
PY - 2016/12
Y1 - 2016/12
N2 - We present possible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron star systems, which are the most promising targets for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and [Formula: see text] credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5-[Formula: see text] requires at least three detectors of sensitivity within a factor of [Formula: see text] of each other and with a broad frequency bandwidth. When all detectors, including KAGRA and the third LIGO detector in India, reach design sensitivity, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.
AB - We present possible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron star systems, which are the most promising targets for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and [Formula: see text] credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5-[Formula: see text] requires at least three detectors of sensitivity within a factor of [Formula: see text] of each other and with a broad frequency bandwidth. When all detectors, including KAGRA and the third LIGO detector in India, reach design sensitivity, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.
KW - Data analysis
KW - Electromagnetic counterparts
KW - Gravitational waves
KW - Gravitational-wave detectors
UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-84959257630&origin=resultslist&sort=plf-f&src=s&sid=106be06e4f4f43dd9ffaae7c74dde16e&sot=b&sdt=b&sl=23&s=DOI%2810.1007%2flrr-2016-1%29&relpos=0&citeCnt=402&searchTerm=
U2 - 10.1007/lrr-2016-1
DO - 10.1007/lrr-2016-1
M3 - Article
C2 - 29725242
AN - SCOPUS:85046034556
VL - 19
SP - 1
JO - Living reviews in relativity
JF - Living reviews in relativity
SN - 1433-8351
IS - 1
ER -