Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autorschaft

  • The LIGO Scientific Collaboration
  • Virgo Collaboration
  • Karsten Danzmann
  • Michele Heurs
  • Harald Lück
  • D. Steinmeyer
  • H. Vahlbruch
  • B. Willke
  • H. Wittel
  • D. D. Brown
  • H. Kim
  • P. Aufmuth
  • G. Bergmann
  • A. Bisht
  • Nina Bode
  • P. Booker
  • M. Brinkmann
  • M. Cabero
  • T. Dent
  • S. Doravari
  • S. Hochheim
  • J. Junker
  • Kai S. Karvinen
  • Stefan Kaufer
  • S. Khan
  • R. Kirchhoff
  • P. Koch
  • S. M. Köhlenbeck
  • N. Koper
  • V. Kringel
  • G. Kuehn
  • S. Leavey
  • J. Lehmann
  • J. D. Lough
  • M. Mehmet
  • Arunava Mukherjee
  • M. Nery
  • F. Ohme
  • P. Oppermann
  • M. Phelps
  • O. Puncken
  • A. Rüdiger
  • E. Schreiber
  • B. W. Schulte
  • Y. Setyawati
  • M. Standke
  • M. Steinke
  • F. Thies
  • M. Weinert
  • F. Wellmann
  • Peter Weßels
  • D. Wilken
  • M. Wimmer
  • W. Winkler
  • J. Woehler
  • D. S. Wu
  • Andreas Sawadsky
  • D. Schuette
  • B. Allen
  • Timo Denker
  • C. Krueger

Organisationseinheiten

Externe Organisationen

  • California Institute of Technology (Caltech)
  • Louisiana State University
  • American University Washington DC
  • Universita di Salerno
  • Università degli Studi di Napoli Federico II
  • University of Florida
  • Universite de Savoie
  • University of Sannio
  • Nationaal instituut voor subatomaire fysica (Nikhef)
  • LIGO Laboratory
  • Instituto Nacional de Pesquisas Espaciais
  • Istituto Nazionale di Fisica Nucleare (INFN)
  • Tata Institute of Fundamental Research (TIFR HYD)
  • Washington State University Pullman
  • University of Birmingham
  • Inje University
  • Australian National University
  • Embry Riddle Aeronautical University
  • University of Melbourne
  • University of Western Australia
  • Rochester Institute of Technology
  • Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA)
  • Northwestern University
  • National Institute for Mathematical Sciences (NIMS)
  • Inter-University Centre for Astronomy and Astrophysics India
  • Laser Zentrum Hannover e.V. (LZH)
  • University of Glasgow
  • Observatoire de la Côte d’Azur (OCA)
  • Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)
  • University of Wisconsin Milwaukee
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)1
FachzeitschriftLiving reviews in relativity
Jahrgang19
Ausgabenummer1
Frühes Online-Datum8 Feb. 2016
PublikationsstatusVeröffentlicht - Dez. 2016

Abstract

We present possible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron star systems, which are the most promising targets for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and [Formula: see text] credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5-[Formula: see text] requires at least three detectors of sensitivity within a factor of [Formula: see text] of each other and with a broad frequency bandwidth. When all detectors, including KAGRA and the third LIGO detector in India, reach design sensitivity, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.

ASJC Scopus Sachgebiete

Zitieren

Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. / The LIGO Scientific Collaboration; Virgo Collaboration; Danzmann, Karsten et al.
in: Living reviews in relativity, Jahrgang 19, Nr. 1, 12.2016, S. 1.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

The LIGO Scientific Collaboration, Virgo Collaboration, Danzmann, K, Heurs, M, Lück, H, Steinmeyer, D, Vahlbruch, H, Willke, B, Wittel, H, Brown, DD, Kim, H, Aufmuth, P, Bergmann, G, Bisht, A, Bode, N, Booker, P, Brinkmann, M, Cabero, M, Dent, T, Doravari, S, Hochheim, S, Junker, J, Karvinen, KS, Kaufer, S, Khan, S, Kirchhoff, R, Koch, P, Köhlenbeck, SM, Koper, N, Kringel, V, Kuehn, G, Leavey, S, Lehmann, J, Lough, JD, Mehmet, M, Mukherjee, A, Nery, M, Ohme, F, Oppermann, P, Phelps, M, Puncken, O, Rüdiger, A, Schreiber, E, Schulte, BW, Setyawati, Y, Standke, M, Steinke, M, Thies, F, Weinert, M, Wellmann, F, Weßels, P, Wilken, D, Wimmer, M, Winkler, W, Woehler, J, Wu, DS, Sawadsky, A, Schuette, D, Allen, B, Denker, T & Krueger, C 2016, 'Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo', Living reviews in relativity, Jg. 19, Nr. 1, S. 1. https://doi.org/10.1007/lrr-2016-1, https://doi.org/10.15488/10565, https://doi.org/10.1007/s41114-018-0012-9, https://doi.org/10.1007/s41114-020-00026-9
The LIGO Scientific Collaboration, Virgo Collaboration, Danzmann, K., Heurs, M., Lück, H., Steinmeyer, D., Vahlbruch, H., Willke, B., Wittel, H., Brown, D. D., Kim, H., Aufmuth, P., Bergmann, G., Bisht, A., Bode, N., Booker, P., Brinkmann, M., Cabero, M., Dent, T., ... Krueger, C. (2016). Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living reviews in relativity, 19(1), 1. https://doi.org/10.1007/lrr-2016-1, https://doi.org/10.15488/10565, https://doi.org/10.1007/s41114-018-0012-9, https://doi.org/10.1007/s41114-020-00026-9
The LIGO Scientific Collaboration, Virgo Collaboration, Danzmann K, Heurs M, Lück H, Steinmeyer D et al. Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living reviews in relativity. 2016 Dez;19(1):1. Epub 2016 Feb 8. doi: 10.1007/lrr-2016-1, 10.15488/10565, 10.1007/s41114-018-0012-9, 10.1007/s41114-020-00026-9
The LIGO Scientific Collaboration ; Virgo Collaboration ; Danzmann, Karsten et al. / Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. in: Living reviews in relativity. 2016 ; Jahrgang 19, Nr. 1. S. 1.
Download
@article{f6755cb6874c4f96b8ccedbfd2d20ee5,
title = "Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo",
abstract = "We present possible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron star systems, which are the most promising targets for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and [Formula: see text] credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5-[Formula: see text] requires at least three detectors of sensitivity within a factor of [Formula: see text] of each other and with a broad frequency bandwidth. When all detectors, including KAGRA and the third LIGO detector in India, reach design sensitivity, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.",
keywords = "Data analysis, Electromagnetic counterparts, Gravitational waves, Gravitational-wave detectors",
author = "{The LIGO Scientific Collaboration} and {The Virgo Collaboration} and Abbott, {B. P.} and R. Abbott and Abbott, {T. D.} and Abernathy, {Matthew R.} and F. Acernese and K. Ackley and C. Adams and T. Adams and P. Addesso and Adhikari, {R. X.} and Adya, {V. B.} and C. Affeldt and M. Agathos and K. Agatsuma and N. Aggarwal and Aguiar, {O. D.} and L. Aiello and A. Ain and P. Ajith and S. Bose and Y. Chen and Cheng, {H. P.} and Danilishin, {S. L.} and Karsten Danzmann and Hanke, {M. M.} and J. Hennig and Michele Heurs and Lee, {H. K.} and Harald L{\"u}ck and Nguyen, {T. T.} and E. Schmidt and Schmidt, {James E.} and P. Schmidt and D. Steinmeyer and L. Sun and H. Vahlbruch and M. Wang and Y. Wang and L.-W. Wei and B. Willke and H. Wittel and L. Zhang and Y. Zhang and M. Zhou and Brown, {D. D.} and H. Kim and P. Aufmuth and G. Bergmann and A. Bisht and Nina Bode and P. Booker and M. Brinkmann and M. Cabero and T. Dent and S. Doravari and S. Hochheim and J. Junker and Karvinen, {Kai S.} and Stefan Kaufer and S. Khan and R. Kirchhoff and P. Koch and K{\"o}hlenbeck, {S. M.} and N. Koper and V. Kringel and G. Kuehn and S. Leavey and J. Lehmann and Lough, {J. D.} and M. Mehmet and Arunava Mukherjee and M. Nery and F. Ohme and P. Oppermann and M. Phelps and O. Puncken and A. R{\"u}diger and E. Schreiber and Schulte, {B. W.} and Y. Setyawati and M. Standke and M. Steinke and F. Thies and M. Weinert and F. Wellmann and Peter We{\ss}els and D. Wilken and M. Wimmer and W. Winkler and J. Woehler and Wu, {D. S.} and Andreas Sawadsky and D. Schuette and B. Allen and Timo Denker and C. Krueger",
note = "Funding Information: International Center for Theoretical Physics South American Institute for Fundamental Research (ICTP-SAIFR), the Research Grants Council of Hong Kong, the National Natural Science Foundation of China (NSFC), the Leverhulme Trust, the Research Corporation, the Ministry of Science and Technology (MOST), Taiwan and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, MPS, INFN, CNRS and the State of Niedersachsen/Germany for provision of computational resources. The authors gratefully acknowledge the support in Japan by MEXT, JSPS Leading-edge Research Infrastructure Program, JSPS Grant-in-Aid for Specially Promoted Research 26000005, MEXT Grant-in-Aid for Scientific Research on Innovative Areas 24103005, JSPS Core-to-Core Program, A. Advanced Research Networks, the joint research program of the Institute for Cosmic Ray Research, University of Tokyo, and Computing Infrastructure Project of KISTI-GSDC in Korea. This article has been assigned LIGO Document number P1200087, Virgo Document number VIR-0288A-12, and KAGRA Document number JGW-P1706792. ",
year = "2016",
month = dec,
doi = "10.1007/lrr-2016-1",
language = "English",
volume = "19",
pages = "1",
journal = "Living reviews in relativity",
issn = "1433-8351",
publisher = "Albert Einstein Institut",
number = "1",

}

Download

TY - JOUR

T1 - Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo

AU - The LIGO Scientific Collaboration

AU - The Virgo Collaboration

AU - Abbott, B. P.

AU - Abbott, R.

AU - Abbott, T. D.

AU - Abernathy, Matthew R.

AU - Acernese, F.

AU - Ackley, K.

AU - Adams, C.

AU - Adams, T.

AU - Addesso, P.

AU - Adhikari, R. X.

AU - Adya, V. B.

AU - Affeldt, C.

AU - Agathos, M.

AU - Agatsuma, K.

AU - Aggarwal, N.

AU - Aguiar, O. D.

AU - Aiello, L.

AU - Ain, A.

AU - Ajith, P.

AU - Bose, S.

AU - Chen, Y.

AU - Cheng, H. P.

AU - Danilishin, S. L.

AU - Danzmann, Karsten

AU - Hanke, M. M.

AU - Hennig, J.

AU - Heurs, Michele

AU - Lee, H. K.

AU - Lück, Harald

AU - Nguyen, T. T.

AU - Schmidt, E.

AU - Schmidt, James E.

AU - Schmidt, P.

AU - Steinmeyer, D.

AU - Sun, L.

AU - Vahlbruch, H.

AU - Wang, M.

AU - Wang, Y.

AU - Wei, L.-W.

AU - Willke, B.

AU - Wittel, H.

AU - Zhang, L.

AU - Zhang, Y.

AU - Zhou, M.

AU - Brown, D. D.

AU - Kim, H.

AU - Aufmuth, P.

AU - Bergmann, G.

AU - Bisht, A.

AU - Bode, Nina

AU - Booker, P.

AU - Brinkmann, M.

AU - Cabero, M.

AU - Dent, T.

AU - Doravari, S.

AU - Hochheim, S.

AU - Junker, J.

AU - Karvinen, Kai S.

AU - Kaufer, Stefan

AU - Khan, S.

AU - Kirchhoff, R.

AU - Koch, P.

AU - Köhlenbeck, S. M.

AU - Koper, N.

AU - Kringel, V.

AU - Kuehn, G.

AU - Leavey, S.

AU - Lehmann, J.

AU - Lough, J. D.

AU - Mehmet, M.

AU - Mukherjee, Arunava

AU - Nery, M.

AU - Ohme, F.

AU - Oppermann, P.

AU - Phelps, M.

AU - Puncken, O.

AU - Rüdiger, A.

AU - Schreiber, E.

AU - Schulte, B. W.

AU - Setyawati, Y.

AU - Standke, M.

AU - Steinke, M.

AU - Thies, F.

AU - Weinert, M.

AU - Wellmann, F.

AU - Weßels, Peter

AU - Wilken, D.

AU - Wimmer, M.

AU - Winkler, W.

AU - Woehler, J.

AU - Wu, D. S.

AU - Sawadsky, Andreas

AU - Schuette, D.

AU - Allen, B.

AU - Denker, Timo

AU - Krueger, C.

N1 - Funding Information: International Center for Theoretical Physics South American Institute for Fundamental Research (ICTP-SAIFR), the Research Grants Council of Hong Kong, the National Natural Science Foundation of China (NSFC), the Leverhulme Trust, the Research Corporation, the Ministry of Science and Technology (MOST), Taiwan and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, MPS, INFN, CNRS and the State of Niedersachsen/Germany for provision of computational resources. The authors gratefully acknowledge the support in Japan by MEXT, JSPS Leading-edge Research Infrastructure Program, JSPS Grant-in-Aid for Specially Promoted Research 26000005, MEXT Grant-in-Aid for Scientific Research on Innovative Areas 24103005, JSPS Core-to-Core Program, A. Advanced Research Networks, the joint research program of the Institute for Cosmic Ray Research, University of Tokyo, and Computing Infrastructure Project of KISTI-GSDC in Korea. This article has been assigned LIGO Document number P1200087, Virgo Document number VIR-0288A-12, and KAGRA Document number JGW-P1706792.

PY - 2016/12

Y1 - 2016/12

N2 - We present possible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron star systems, which are the most promising targets for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and [Formula: see text] credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5-[Formula: see text] requires at least three detectors of sensitivity within a factor of [Formula: see text] of each other and with a broad frequency bandwidth. When all detectors, including KAGRA and the third LIGO detector in India, reach design sensitivity, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.

AB - We present possible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron star systems, which are the most promising targets for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and [Formula: see text] credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5-[Formula: see text] requires at least three detectors of sensitivity within a factor of [Formula: see text] of each other and with a broad frequency bandwidth. When all detectors, including KAGRA and the third LIGO detector in India, reach design sensitivity, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.

KW - Data analysis

KW - Electromagnetic counterparts

KW - Gravitational waves

KW - Gravitational-wave detectors

UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-84959257630&origin=resultslist&sort=plf-f&src=s&sid=106be06e4f4f43dd9ffaae7c74dde16e&sot=b&sdt=b&sl=23&s=DOI%2810.1007%2flrr-2016-1%29&relpos=0&citeCnt=402&searchTerm=

U2 - 10.1007/lrr-2016-1

DO - 10.1007/lrr-2016-1

M3 - Article

C2 - 29725242

AN - SCOPUS:85046034556

VL - 19

SP - 1

JO - Living reviews in relativity

JF - Living reviews in relativity

SN - 1433-8351

IS - 1

ER -

Von denselben Autoren