Properties and Astrophysical Implications of the 150 M Binary Black Hole Merger GW190521

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autorschaft

  • Virgo Collaboration
  • The LIGO Scientific Collaboration
  • C. Affeldt
  • S. L. Danilishin
  • K. Danzmann
  • M. Heurs
  • H. Lück
  • D. Steinmeyer
  • H. Vahlbruch
  • L. W. Wei
  • D. M. Wilken
  • B. Willke
  • H. Wittel
  • Sukanta Bose
  • D. D. Brown
  • Y. H. Chen
  • Hai-Ping Cheng
  • J. Gniesmer
  • Manuela Hanke
  • J. Hennig
  • M. T. Hübner
  • Sanjeev Kumar
  • R. N. Lang
  • C. H. Lee
  • H. M. Lee
  • H. W. Lee
  • J. Lee
  • K. Lee
  • X. Li
  • C. A. Rose
  • D. Rose
  • J. R. Sanders
  • Patricia Schmidt
  • L. Sun
  • D. S. Wu
  • H. Zhang
  • X. J. Zhu
  • Minchuan Zhou
  • Fabio Bergamin
  • A. Bisht
  • Nina Bode
  • P. Booker
  • M. Brinkmann
  • M. Cabero
  • N. Gohlke
  • J. Heinze
  • O. de Varona
  • S. Hochheim
  • J. Junker
  • W. Kastaun
  • Stefan Kaufer
  • S. Khan
  • R. Kirchhoff
  • P. Koch
  • N. Koper
  • S. M. Köhlenbeck
  • V. Kringel
  • G. Kuehn
  • S. Leavey
  • J. Lehmann
  • J. Liu
  • J. D. Lough
  • M. Mehmet
  • Fabian Meylahn
  • N. Mukund
  • M. Nery
  • F. Ohme
  • P. Oppermann
  • E. Schreiber
  • B. W. Schulte
  • Y. Setyawati
  • M. Steinke
  • M. Phelps
  • M. Standke
  • M. Weinert
  • F. Wellmann
  • Peter Weßels
  • W. Winkler
  • J. Woehler
  • Peter Aufmuth
  • Gerald Bergmann

Externe Organisationen

  • California Institute of Technology (Caltech)
  • Louisiana State University
  • Inter-University Centre for Astronomy and Astrophysics India
  • Universita di Salerno
  • Università degli Studi di Napoli Federico II
  • Monash University
  • Australian National University
  • University of Cambridge
  • University of Birmingham
  • Northwestern University
  • Instituto Nacional de Pesquisas Espaciais
  • University of Texas Rio Grande Valley
  • Gran Sasso Science Institute
  • Istituto Nazionale di Fisica Nucleare (INFN)
  • Tata Institute of Fundamental Research (TIFR HYD)
  • University of Illinois Urbana-Champaign (UIUC)
  • Sezione di Pisa
  • Universität Lyon
  • University of Wisconsin Milwaukee
  • University of Strathclyde
  • University of Udine
  • Observatoire de Paris (OBSPARIS)
  • California State University Fullerton
  • Université Paris XI
  • European Gravitational Observatory (EGO)
  • University of Florida
  • Chennai Mathematical Institute
  • Columbia University
  • Washington State University Pullman
  • University of Adelaide
  • Massachusetts Institute of Technology (MIT)
  • Universität Hamburg
  • LIGO Laboratory
  • Inje University
  • Stanford University
  • The California State University
  • Radboud Universität Nijmegen (RU)
  • University of Melbourne
  • National Taiwan Normal University
  • Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)
  • Friedrich-Schiller-Universität Jena
  • University of Glasgow
  • Laser Zentrum Hannover e.V. (LZH)
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
AufsatznummerL13
FachzeitschriftAstrophysical Journal Letters
Jahrgang900
Ausgabenummer1
PublikationsstatusVeröffentlicht - 2 Sept. 2020

Abstract

The gravitational-wave signal GW190521 is consistent with a binary black hole (BBH) merger source at redshift 0.8 with unusually high component masses, 85-14+21 M o˙ and 66-18+17 M o˙, compared to previously reported events, and shows mild evidence for spin-induced orbital precession. The primary falls in the mass gap predicted by (pulsational) pair-instability supernova theory, in the approximate range 65-120 M o˙. The probability that at least one of the black holes in GW190521 is in that range is 99.0%. The final mass of the merger (142-16+28 M o˙) classifies it as an intermediate-mass black hole. Under the assumption of a quasi-circular BBH coalescence, we detail the physical properties of GW190521's source binary and its post-merger remnant, including component masses and spin vectors. Three different waveform models, as well as direct comparison to numerical solutions of general relativity, yield consistent estimates of these properties. Tests of strong-field general relativity targeting the merger-ringdown stages of the coalescence indicate consistency of the observed signal with theoretical predictions. We estimate the merger rate of similar systems to be 0.13-0.11+0.30 Gpc-3 yr-1. We discuss the astrophysical implications of GW190521 for stellar collapse and for the possible formation of black holes in the pair-instability mass gap through various channels: via (multiple) stellar coalescences, or via hierarchical mergers of lower-mass black holes in star clusters or in active galactic nuclei. We find it to be unlikely that GW190521 is a strongly lensed signal of a lower-mass black hole binary merger. We also discuss more exotic possible sources for GW190521, including a highly eccentric black hole binary, or a primordial black hole binary.

ASJC Scopus Sachgebiete

Zitieren

Properties and Astrophysical Implications of the 150 M Binary Black Hole Merger GW190521. / Virgo Collaboration; The LIGO Scientific Collaboration; Affeldt, C. et al.
in: Astrophysical Journal Letters, Jahrgang 900, Nr. 1, L13, 02.09.2020.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Virgo Collaboration, The LIGO Scientific Collaboration, Affeldt, C, Danilishin, SL, Danzmann, K, Heurs, M, Lück, H, Steinmeyer, D, Vahlbruch, H, Wei, LW, Wilken, DM, Willke, B, Wittel, H, Bose, S, Brown, DD, Chen, YH, Cheng, H-P, Gniesmer, J, Hanke, M, Hennig, J, Hübner, MT, Kumar, S, Lang, RN, Lee, CH, Lee, HM, Lee, HW, Lee, J, Lee, K, Li, X, Rose, CA, Rose, D, Sanders, JR, Schmidt, P, Sun, L, Wu, DS, Zhang, H, Zhu, XJ, Zhou, M, Bergamin, F, Bisht, A, Bode, N, Booker, P, Brinkmann, M, Cabero, M, Gohlke, N, Heinze, J, de Varona, O, Hochheim, S, Junker, J, Kastaun, W, Kaufer, S, Khan, S, Kirchhoff, R, Koch, P, Koper, N, Köhlenbeck, SM, Kringel, V, Kuehn, G, Leavey, S, Lehmann, J, Liu, J, Lough, JD, Mehmet, M, Meylahn, F, Mukund, N, Nery, M, Ohme, F, Oppermann, P, Schreiber, E, Schulte, BW, Setyawati, Y, Steinke, M, Phelps, M, Standke, M, Weinert, M, Wellmann, F, Weßels, P, Winkler, W, Woehler, J, Aufmuth, P & Bergmann, G 2020, 'Properties and Astrophysical Implications of the 150 M Binary Black Hole Merger GW190521', Astrophysical Journal Letters, Jg. 900, Nr. 1, L13. https://doi.org/10.48550/arXiv.2009.01190, https://doi.org/10.3847/2041-8213/aba493
Virgo Collaboration, The LIGO Scientific Collaboration, Affeldt, C., Danilishin, S. L., Danzmann, K., Heurs, M., Lück, H., Steinmeyer, D., Vahlbruch, H., Wei, L. W., Wilken, D. M., Willke, B., Wittel, H., Bose, S., Brown, D. D., Chen, Y. H., Cheng, H.-P., Gniesmer, J., Hanke, M., ... Bergmann, G. (2020). Properties and Astrophysical Implications of the 150 M Binary Black Hole Merger GW190521. Astrophysical Journal Letters, 900(1), Artikel L13. https://doi.org/10.48550/arXiv.2009.01190, https://doi.org/10.3847/2041-8213/aba493
Virgo Collaboration, The LIGO Scientific Collaboration, Affeldt C, Danilishin SL, Danzmann K, Heurs M et al. Properties and Astrophysical Implications of the 150 M Binary Black Hole Merger GW190521. Astrophysical Journal Letters. 2020 Sep 2;900(1):L13. doi: 10.48550/arXiv.2009.01190, 10.3847/2041-8213/aba493
Virgo Collaboration ; The LIGO Scientific Collaboration ; Affeldt, C. et al. / Properties and Astrophysical Implications of the 150 M Binary Black Hole Merger GW190521. in: Astrophysical Journal Letters. 2020 ; Jahrgang 900, Nr. 1.
Download
@article{8af567d597ed405fb3980d596f22de9e,
title = "Properties and Astrophysical Implications of the 150 M o˙Binary Black Hole Merger GW190521",
abstract = "The gravitational-wave signal GW190521 is consistent with a binary black hole (BBH) merger source at redshift 0.8 with unusually high component masses, 85-14+21 M o˙ and 66-18+17 M o˙, compared to previously reported events, and shows mild evidence for spin-induced orbital precession. The primary falls in the mass gap predicted by (pulsational) pair-instability supernova theory, in the approximate range 65-120 M o˙. The probability that at least one of the black holes in GW190521 is in that range is 99.0%. The final mass of the merger (142-16+28 M o˙) classifies it as an intermediate-mass black hole. Under the assumption of a quasi-circular BBH coalescence, we detail the physical properties of GW190521's source binary and its post-merger remnant, including component masses and spin vectors. Three different waveform models, as well as direct comparison to numerical solutions of general relativity, yield consistent estimates of these properties. Tests of strong-field general relativity targeting the merger-ringdown stages of the coalescence indicate consistency of the observed signal with theoretical predictions. We estimate the merger rate of similar systems to be 0.13-0.11+0.30 Gpc-3 yr-1. We discuss the astrophysical implications of GW190521 for stellar collapse and for the possible formation of black holes in the pair-instability mass gap through various channels: via (multiple) stellar coalescences, or via hierarchical mergers of lower-mass black holes in star clusters or in active galactic nuclei. We find it to be unlikely that GW190521 is a strongly lensed signal of a lower-mass black hole binary merger. We also discuss more exotic possible sources for GW190521, including a highly eccentric black hole binary, or a primordial black hole binary.",
author = "{The Virgo Collaboration} and {The LIGO Scientific Collaboration} and R. Abbott and Abbott, {T. D.} and S. Abraham and F. Acernese and K. Ackley and C. Adams and Adhikari, {R. X.} and Adya, {V. B.} and C. Affeldt and M. Agathos and K. Agatsuma and N. Aggarwal and Aguiar, {O. D.} and A. Aich and L. Aiello and A. Ain and P. Ajith and S. Akcay and G. Allen and A. Allocca and Altin, {P. A.} and A. Amato and S. Anand and A. Ananyeva and Anderson, {S. B.} and Anderson, {W. G.} and Angelova, {S. V.} and S. Ansoldi and S. Antier and S. Appert and K. Arai and Araya, {M. C.} and Areeda, {J. S.} and M. Ar{\`e}ne and N. Arnaud and Aronson, {S. M.} and Arun, {K. G.} and Y. Asali and S. Ascenzi and G. Ashton and Danilishin, {S. L.} and K. Danzmann and M. Heurs and H. L{\"u}ck and D. Steinmeyer and H. Vahlbruch and Wei, {L. W.} and Wilken, {D. M.} and B. Willke and H. Wittel and Sukanta Bose and Brown, {D. D.} and Chen, {Y. H.} and Hai-Ping Cheng and J. Gniesmer and Manuela Hanke and J. Hennig and H{\"u}bner, {M. T.} and Sanjeev Kumar and Lang, {R. N.} and Lee, {C. H.} and Lee, {H. M.} and Lee, {H. W.} and J. Lee and K. Lee and X. Li and Rose, {C. A.} and D. Rose and Sanders, {J. R.} and Patricia Schmidt and L. Sun and Wu, {D. S.} and H. Zhang and Zhu, {X. J.} and Minchuan Zhou and Fabio Bergamin and A. Bisht and Nina Bode and P. Booker and M. Brinkmann and M. Cabero and N. Gohlke and J. Heinze and {de Varona}, O. and S. Hochheim and J. Junker and W. Kastaun and Stefan Kaufer and S. Khan and R. Kirchhoff and P. Koch and N. Koper and K{\"o}hlenbeck, {S. M.} and V. Kringel and G. Kuehn and S. Leavey and J. Lehmann and J. Liu and Lough, {J. D.} and M. Mehmet and Fabian Meylahn and N. Mukund and M. Nery and F. Ohme and P. Oppermann and E. Schreiber and Schulte, {B. W.} and Y. Setyawati and M. Steinke and M. Phelps and M. Standke and M. Weinert and F. Wellmann and Peter We{\ss}els and W. Winkler and J. Woehler and Peter Aufmuth and Gerald Bergmann",
year = "2020",
month = sep,
day = "2",
doi = "10.48550/arXiv.2009.01190",
language = "English",
volume = "900",
journal = "Astrophysical Journal Letters",
issn = "2041-8205",
publisher = "IOP Publishing Ltd.",
number = "1",

}

Download

TY - JOUR

T1 - Properties and Astrophysical Implications of the 150 M o˙Binary Black Hole Merger GW190521

AU - The Virgo Collaboration

AU - The LIGO Scientific Collaboration

AU - Abbott, R.

AU - Abbott, T. D.

AU - Abraham, S.

AU - Acernese, F.

AU - Ackley, K.

AU - Adams, C.

AU - Adhikari, R. X.

AU - Adya, V. B.

AU - Affeldt, C.

AU - Agathos, M.

AU - Agatsuma, K.

AU - Aggarwal, N.

AU - Aguiar, O. D.

AU - Aich, A.

AU - Aiello, L.

AU - Ain, A.

AU - Ajith, P.

AU - Akcay, S.

AU - Allen, G.

AU - Allocca, A.

AU - Altin, P. A.

AU - Amato, A.

AU - Anand, S.

AU - Ananyeva, A.

AU - Anderson, S. B.

AU - Anderson, W. G.

AU - Angelova, S. V.

AU - Ansoldi, S.

AU - Antier, S.

AU - Appert, S.

AU - Arai, K.

AU - Araya, M. C.

AU - Areeda, J. S.

AU - Arène, M.

AU - Arnaud, N.

AU - Aronson, S. M.

AU - Arun, K. G.

AU - Asali, Y.

AU - Ascenzi, S.

AU - Ashton, G.

AU - Danilishin, S. L.

AU - Danzmann, K.

AU - Heurs, M.

AU - Lück, H.

AU - Steinmeyer, D.

AU - Vahlbruch, H.

AU - Wei, L. W.

AU - Wilken, D. M.

AU - Willke, B.

AU - Wittel, H.

AU - Bose, Sukanta

AU - Brown, D. D.

AU - Chen, Y. H.

AU - Cheng, Hai-Ping

AU - Gniesmer, J.

AU - Hanke, Manuela

AU - Hennig, J.

AU - Hübner, M. T.

AU - Kumar, Sanjeev

AU - Lang, R. N.

AU - Lee, C. H.

AU - Lee, H. M.

AU - Lee, H. W.

AU - Lee, J.

AU - Lee, K.

AU - Li, X.

AU - Rose, C. A.

AU - Rose, D.

AU - Sanders, J. R.

AU - Schmidt, Patricia

AU - Sun, L.

AU - Wu, D. S.

AU - Zhang, H.

AU - Zhu, X. J.

AU - Zhou, Minchuan

AU - Bergamin, Fabio

AU - Bisht, A.

AU - Bode, Nina

AU - Booker, P.

AU - Brinkmann, M.

AU - Cabero, M.

AU - Gohlke, N.

AU - Heinze, J.

AU - de Varona, O.

AU - Hochheim, S.

AU - Junker, J.

AU - Kastaun, W.

AU - Kaufer, Stefan

AU - Khan, S.

AU - Kirchhoff, R.

AU - Koch, P.

AU - Koper, N.

AU - Köhlenbeck, S. M.

AU - Kringel, V.

AU - Kuehn, G.

AU - Leavey, S.

AU - Lehmann, J.

AU - Liu, J.

AU - Lough, J. D.

AU - Mehmet, M.

AU - Meylahn, Fabian

AU - Mukund, N.

AU - Nery, M.

AU - Ohme, F.

AU - Oppermann, P.

AU - Schreiber, E.

AU - Schulte, B. W.

AU - Setyawati, Y.

AU - Steinke, M.

AU - Phelps, M.

AU - Standke, M.

AU - Weinert, M.

AU - Wellmann, F.

AU - Weßels, Peter

AU - Winkler, W.

AU - Woehler, J.

AU - Aufmuth, Peter

AU - Bergmann, Gerald

PY - 2020/9/2

Y1 - 2020/9/2

N2 - The gravitational-wave signal GW190521 is consistent with a binary black hole (BBH) merger source at redshift 0.8 with unusually high component masses, 85-14+21 M o˙ and 66-18+17 M o˙, compared to previously reported events, and shows mild evidence for spin-induced orbital precession. The primary falls in the mass gap predicted by (pulsational) pair-instability supernova theory, in the approximate range 65-120 M o˙. The probability that at least one of the black holes in GW190521 is in that range is 99.0%. The final mass of the merger (142-16+28 M o˙) classifies it as an intermediate-mass black hole. Under the assumption of a quasi-circular BBH coalescence, we detail the physical properties of GW190521's source binary and its post-merger remnant, including component masses and spin vectors. Three different waveform models, as well as direct comparison to numerical solutions of general relativity, yield consistent estimates of these properties. Tests of strong-field general relativity targeting the merger-ringdown stages of the coalescence indicate consistency of the observed signal with theoretical predictions. We estimate the merger rate of similar systems to be 0.13-0.11+0.30 Gpc-3 yr-1. We discuss the astrophysical implications of GW190521 for stellar collapse and for the possible formation of black holes in the pair-instability mass gap through various channels: via (multiple) stellar coalescences, or via hierarchical mergers of lower-mass black holes in star clusters or in active galactic nuclei. We find it to be unlikely that GW190521 is a strongly lensed signal of a lower-mass black hole binary merger. We also discuss more exotic possible sources for GW190521, including a highly eccentric black hole binary, or a primordial black hole binary.

AB - The gravitational-wave signal GW190521 is consistent with a binary black hole (BBH) merger source at redshift 0.8 with unusually high component masses, 85-14+21 M o˙ and 66-18+17 M o˙, compared to previously reported events, and shows mild evidence for spin-induced orbital precession. The primary falls in the mass gap predicted by (pulsational) pair-instability supernova theory, in the approximate range 65-120 M o˙. The probability that at least one of the black holes in GW190521 is in that range is 99.0%. The final mass of the merger (142-16+28 M o˙) classifies it as an intermediate-mass black hole. Under the assumption of a quasi-circular BBH coalescence, we detail the physical properties of GW190521's source binary and its post-merger remnant, including component masses and spin vectors. Three different waveform models, as well as direct comparison to numerical solutions of general relativity, yield consistent estimates of these properties. Tests of strong-field general relativity targeting the merger-ringdown stages of the coalescence indicate consistency of the observed signal with theoretical predictions. We estimate the merger rate of similar systems to be 0.13-0.11+0.30 Gpc-3 yr-1. We discuss the astrophysical implications of GW190521 for stellar collapse and for the possible formation of black holes in the pair-instability mass gap through various channels: via (multiple) stellar coalescences, or via hierarchical mergers of lower-mass black holes in star clusters or in active galactic nuclei. We find it to be unlikely that GW190521 is a strongly lensed signal of a lower-mass black hole binary merger. We also discuss more exotic possible sources for GW190521, including a highly eccentric black hole binary, or a primordial black hole binary.

UR - http://www.scopus.com/inward/record.url?scp=85094168773&partnerID=8YFLogxK

U2 - 10.48550/arXiv.2009.01190

DO - 10.48550/arXiv.2009.01190

M3 - Article

AN - SCOPUS:85094168773

VL - 900

JO - Astrophysical Journal Letters

JF - Astrophysical Journal Letters

SN - 2041-8205

IS - 1

M1 - L13

ER -

Von denselben Autoren