Details
Originalsprache | Englisch |
---|---|
Titel des Sammelwerks | Conference on Automated Knowledge Base Construction |
Seitenumfang | 15 |
Publikationsstatus | Veröffentlicht - 2021 |
Extern publiziert | Ja |
Abstract
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
Conference on Automated Knowledge Base Construction. 2021.
Publikation: Beitrag in Buch/Bericht/Sammelwerk/Konferenzband › Aufsatz in Konferenzband › Forschung › Peer-Review
}
TY - GEN
T1 - Prompt Tuning or Fine-Tuning
T2 - Investigating Relational Knowledge in Pre-Trained Language Models.
AU - Fichtel, Leandra
AU - Kalo, Jan-Christoph
AU - Balke, Wolf-Tilo
PY - 2021
Y1 - 2021
N2 - Extracting relational knowledge from large pre-trained language models by a cloze-style sentence serving as a query has shown promising results. In particular, language models can be queried similar to knowledge graphs. The performance of the relational fact extraction task depends significantly on the query sentence, also known under the term prompt. Tuning these prompts has shown to increase the precision on standard language models by a maximum of around 12% points. However, usually large amounts of data in the form of existing knowledge graph facts and large text corpora are needed to train the required additional model. In this work, we propose using a completely different approach: Instead of spending resources on training an additional model, we simply perform an adaptive fine-tuning of the pre-trained language model on the standard fill-mask task using a small training dataset of existing facts from a knowledge graph. We investigate the differences between complex prompting techniques and adaptive fine-tuning in an extensive evaluation. Remarkably, adaptive fine-tuning outperforms all baselines, even by using significantly fewer training facts. Additionally, we analyze the transfer learning capabilities of this adapted language model by training on a restricted set of relations to show that even fewer training relations are needed to achieve high knowledge extraction quality.
AB - Extracting relational knowledge from large pre-trained language models by a cloze-style sentence serving as a query has shown promising results. In particular, language models can be queried similar to knowledge graphs. The performance of the relational fact extraction task depends significantly on the query sentence, also known under the term prompt. Tuning these prompts has shown to increase the precision on standard language models by a maximum of around 12% points. However, usually large amounts of data in the form of existing knowledge graph facts and large text corpora are needed to train the required additional model. In this work, we propose using a completely different approach: Instead of spending resources on training an additional model, we simply perform an adaptive fine-tuning of the pre-trained language model on the standard fill-mask task using a small training dataset of existing facts from a knowledge graph. We investigate the differences between complex prompting techniques and adaptive fine-tuning in an extensive evaluation. Remarkably, adaptive fine-tuning outperforms all baselines, even by using significantly fewer training facts. Additionally, we analyze the transfer learning capabilities of this adapted language model by training on a restricted set of relations to show that even fewer training relations are needed to achieve high knowledge extraction quality.
U2 - 10.24432/C5RC75
DO - 10.24432/C5RC75
M3 - Conference contribution
BT - Conference on Automated Knowledge Base Construction
ER -