Process development and optical simulation of fully evaporated perovskite solar cells

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Autoren

  • Marvin Diederich
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
QualifikationDoctor rerum naturalium
Gradverleihende Hochschule
Betreut von
  • Hans-Jörg Osten, Betreuer*in
Datum der Verleihung des Grades13 Feb. 2023
ErscheinungsortHannover
PublikationsstatusVeröffentlicht - 2023

Abstract

Perowskite sind eines der vielversprechendsten Materialien f ¨ ur die n¨achste Generation von Solarzellen, insbesondere die Kombination einer Perowskit Topsolarzelle mit einer Silizium Bottomsolarzelle in einer Tandemsolarzelle. Perowskitsolarzellen werden jedoch durch verschiedene Umwelteinfl¨ usse beeintr¨achtigt, und sowohl die Langzeitstabilit¨at als auch die Reproduzierbarkeit des Herstellungsprozesses sind nach wie vor wichtige Probleme, die noch nicht gelöst sind. In dieser Arbeit werde ich die Herstellung von Perowskitsolarzellen mit dem aufgedampften Perowskit MAPbI3 detailliert beschreiben. Ich werde zeigen, dass diese Solarzellen derzeit vor allem unter zwei Mechanismen leiden, die den Wirkungsgrad begrenzen und eine Degradation verursachen. Der erste ist die Degradation durch Feuchtigkeit, die hauptsächlich durch hygroskopisches MAI in der Perowskitschicht verursacht wird, da unsere Prozessierung und Messung teilweise in Umgebungsatmosph¨are stattfindet. Der zweite Effekt wird durch Ionenbewegung im Perowskit verursacht, die Hystereseeffekte und, sobald die Metallelektrode der Perowskitsolarzelle abgeschieden ist, auch langfristige Degradation verursacht. Ich werde skizzieren, wie beide Effekte in Zukunft durch Optimierungen der Herstellungs- und Messbedingungen bestimmt und minimiert werden k¨onnen. Erste Experimente mit einigen dieser Optimierungen zeigen bereits Zellwirkungsgrade von bis zu 17%. Im zweiten Teil dieser Arbeit werde ich optische Simulationen sowohl von Perowskit-Single-Junction Solarzellen als auch von Perowskit-Silizium-Tandemsolarzellen vorstellen. F¨ ur die Perowskit- Single-Junction Solarzellen mit aufgedampftem MAPbI3 werde ich ein effektives Medium-Modell vorstellen, das verwendet werden kann, um variierende Absorption in PbI2 reichen MAPbI3 zu beschreiben. F¨ ur die Tandemsolarzellen werde ich die Auswirkungen der Vorder- und R¨ uckseitentextur sowie einen neuartigen Poly-Silizium-Rekombinations ¨ ubergang zwischen den Perowskit- und Silizium- Subzellen auf die Stromerzeugung untersuchen.

Zitieren

Process development and optical simulation of fully evaporated perovskite solar cells. / Diederich, Marvin.
Hannover, 2023. 126 S.

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Diederich, M 2023, 'Process development and optical simulation of fully evaporated perovskite solar cells', Doctor rerum naturalium, Gottfried Wilhelm Leibniz Universität Hannover, Hannover. https://doi.org/10.15488/13268
Diederich, M. (2023). Process development and optical simulation of fully evaporated perovskite solar cells. [Dissertation, Gottfried Wilhelm Leibniz Universität Hannover]. https://doi.org/10.15488/13268
Diederich M. Process development and optical simulation of fully evaporated perovskite solar cells. Hannover, 2023. 126 S. doi: 10.15488/13268
Download
@phdthesis{64888be2304742a7bb8cf556df206630,
title = "Process development and optical simulation of fully evaporated perovskite solar cells",
abstract = "Perovskites are one of the most promising materials for next generation photovoltaics, especially the combination of a perovskite top solar cell with a silicon bottom solar cell in a tandem solar cell. Perovskite solar cells however suffer from degradation due to several ambient effects and long term stability as well as process reproducibility are still major issues to overcome. In this thesis I will explain the processing of perovskite solar cells with the evaporated perovskite MAPbI3. I will show that these devices currently suffer mostly from two effects that limit efficiency and cause degradation. The first is degradation due to moisture mainly caused by hygroscopic MAI in the perovskite layer, since our processing and measurement partially takes place in ambient atmosphere.The second effect is caused by ionic movement in the perovskite, which causes hysteresis effects as well as long term degradation once the metal electrode of the perovskite solar cell is deposited. I will outline how to measure and minimize both effects in future with optimisations in the processing and measurement conditions. First experiments including some of these optimisations already show cell efficiencies up to 17%. In the second part of this work I will present optical simulations of both single-junction perovskite and perovskite-silicon tandem solar cells. For the perovskite single-junction cells with evaporated MAPbI3 I will present an effective medium model that can be used to identify the varying absorption in the PbI2 rich MAPbI3. For the tandem solar cells I will discuss the optical effects of front and rear side texture as well as a novel poly-silicon recombination junction in between the perovskite and silicon subcells.",
author = "Marvin Diederich",
note = "Doctoral thesis",
year = "2023",
doi = "10.15488/13268",
language = "English",
school = "Leibniz University Hannover",

}

Download

TY - BOOK

T1 - Process development and optical simulation of fully evaporated perovskite solar cells

AU - Diederich, Marvin

N1 - Doctoral thesis

PY - 2023

Y1 - 2023

N2 - Perovskites are one of the most promising materials for next generation photovoltaics, especially the combination of a perovskite top solar cell with a silicon bottom solar cell in a tandem solar cell. Perovskite solar cells however suffer from degradation due to several ambient effects and long term stability as well as process reproducibility are still major issues to overcome. In this thesis I will explain the processing of perovskite solar cells with the evaporated perovskite MAPbI3. I will show that these devices currently suffer mostly from two effects that limit efficiency and cause degradation. The first is degradation due to moisture mainly caused by hygroscopic MAI in the perovskite layer, since our processing and measurement partially takes place in ambient atmosphere.The second effect is caused by ionic movement in the perovskite, which causes hysteresis effects as well as long term degradation once the metal electrode of the perovskite solar cell is deposited. I will outline how to measure and minimize both effects in future with optimisations in the processing and measurement conditions. First experiments including some of these optimisations already show cell efficiencies up to 17%. In the second part of this work I will present optical simulations of both single-junction perovskite and perovskite-silicon tandem solar cells. For the perovskite single-junction cells with evaporated MAPbI3 I will present an effective medium model that can be used to identify the varying absorption in the PbI2 rich MAPbI3. For the tandem solar cells I will discuss the optical effects of front and rear side texture as well as a novel poly-silicon recombination junction in between the perovskite and silicon subcells.

AB - Perovskites are one of the most promising materials for next generation photovoltaics, especially the combination of a perovskite top solar cell with a silicon bottom solar cell in a tandem solar cell. Perovskite solar cells however suffer from degradation due to several ambient effects and long term stability as well as process reproducibility are still major issues to overcome. In this thesis I will explain the processing of perovskite solar cells with the evaporated perovskite MAPbI3. I will show that these devices currently suffer mostly from two effects that limit efficiency and cause degradation. The first is degradation due to moisture mainly caused by hygroscopic MAI in the perovskite layer, since our processing and measurement partially takes place in ambient atmosphere.The second effect is caused by ionic movement in the perovskite, which causes hysteresis effects as well as long term degradation once the metal electrode of the perovskite solar cell is deposited. I will outline how to measure and minimize both effects in future with optimisations in the processing and measurement conditions. First experiments including some of these optimisations already show cell efficiencies up to 17%. In the second part of this work I will present optical simulations of both single-junction perovskite and perovskite-silicon tandem solar cells. For the perovskite single-junction cells with evaporated MAPbI3 I will present an effective medium model that can be used to identify the varying absorption in the PbI2 rich MAPbI3. For the tandem solar cells I will discuss the optical effects of front and rear side texture as well as a novel poly-silicon recombination junction in between the perovskite and silicon subcells.

U2 - 10.15488/13268

DO - 10.15488/13268

M3 - Doctoral thesis

CY - Hannover

ER -