Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 1-7 |
Seitenumfang | 7 |
Fachzeitschrift | International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives |
Jahrgang | 48 |
Ausgabenummer | 2 |
Publikationsstatus | Veröffentlicht - 11 Juni 2024 |
Veranstaltung | ISPRS TC II Mid-term Symposium on the Role of Photogrammetry for a Sustainable World - Las Vegas, USA / Vereinigte Staaten Dauer: 11 Juni 2024 → 14 Juni 2024 |
Abstract
Rubber production is a labour-intensive process. In order to reduce the needed number of workers and the waste of material, the level of digitalisation should be increased. One part of the production is the extrusion to produce gaskets and similar objects. An automated observation of the continuous rubber extrudate enables an early intervention in the production process. In addition to chemical monitoring, the geometrical observation of the extrudate is an important aspect of the quality control. For this purpose, we use laser triangulation sensors (LTS) at the beginning and the end of the cooling phase of the extrudate after the extrusion. The LTS acquire two-dimensional profiles at a constant frequency. To combine these profiles into a three-dimensional model of the extrudate, the movement of the extrudate has to be tracked. Since the extrudate is moved over a conveyor belt, the conveyor belt can be tracked by a stereo camera system to deduce the movement of the extrudate. For the correct usage of the tracking, the orientation between the LTS and the stereo camera system needs to be known. A calibration object that considers the different data from the LTS and the camera system was developed to determine the orientation. Afterwards, the orientation can be used to combine arbitrary profiles. The measurement setup, consisting of the LTS, the stereo camera system and the conveyor belt, is explained. The development of the calibration object, the algorithm for evaluating the orientation data and the combination of the LTS profiles are described. Finally, experiments with real extrusion data are presented to validate the results and compare three variations of data evaluation. Two use the calculated orientation, but have different tracking approaches and one without any orientation necessary.
ASJC Scopus Sachgebiete
- Informatik (insg.)
- Information systems
- Sozialwissenschaften (insg.)
- Geografie, Planung und Entwicklung
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, Jahrgang 48, Nr. 2, 11.06.2024, S. 1-7.
Publikation: Beitrag in Fachzeitschrift › Konferenzaufsatz in Fachzeitschrift › Forschung › Peer-Review
}
TY - JOUR
T1 - Procedure for the Orientation of Laser Triangulation Sensors to a Stereo Camera System for the Inline Measurement of Rubber Extrudate
AU - Albers, Simon
AU - Rofallski, Robin
AU - Hagen, Paul Felix
AU - Luhmann, Thomas
N1 - Publisher Copyright: © Author(s) 2024.
PY - 2024/6/11
Y1 - 2024/6/11
N2 - Rubber production is a labour-intensive process. In order to reduce the needed number of workers and the waste of material, the level of digitalisation should be increased. One part of the production is the extrusion to produce gaskets and similar objects. An automated observation of the continuous rubber extrudate enables an early intervention in the production process. In addition to chemical monitoring, the geometrical observation of the extrudate is an important aspect of the quality control. For this purpose, we use laser triangulation sensors (LTS) at the beginning and the end of the cooling phase of the extrudate after the extrusion. The LTS acquire two-dimensional profiles at a constant frequency. To combine these profiles into a three-dimensional model of the extrudate, the movement of the extrudate has to be tracked. Since the extrudate is moved over a conveyor belt, the conveyor belt can be tracked by a stereo camera system to deduce the movement of the extrudate. For the correct usage of the tracking, the orientation between the LTS and the stereo camera system needs to be known. A calibration object that considers the different data from the LTS and the camera system was developed to determine the orientation. Afterwards, the orientation can be used to combine arbitrary profiles. The measurement setup, consisting of the LTS, the stereo camera system and the conveyor belt, is explained. The development of the calibration object, the algorithm for evaluating the orientation data and the combination of the LTS profiles are described. Finally, experiments with real extrusion data are presented to validate the results and compare three variations of data evaluation. Two use the calculated orientation, but have different tracking approaches and one without any orientation necessary.
AB - Rubber production is a labour-intensive process. In order to reduce the needed number of workers and the waste of material, the level of digitalisation should be increased. One part of the production is the extrusion to produce gaskets and similar objects. An automated observation of the continuous rubber extrudate enables an early intervention in the production process. In addition to chemical monitoring, the geometrical observation of the extrudate is an important aspect of the quality control. For this purpose, we use laser triangulation sensors (LTS) at the beginning and the end of the cooling phase of the extrudate after the extrusion. The LTS acquire two-dimensional profiles at a constant frequency. To combine these profiles into a three-dimensional model of the extrudate, the movement of the extrudate has to be tracked. Since the extrudate is moved over a conveyor belt, the conveyor belt can be tracked by a stereo camera system to deduce the movement of the extrudate. For the correct usage of the tracking, the orientation between the LTS and the stereo camera system needs to be known. A calibration object that considers the different data from the LTS and the camera system was developed to determine the orientation. Afterwards, the orientation can be used to combine arbitrary profiles. The measurement setup, consisting of the LTS, the stereo camera system and the conveyor belt, is explained. The development of the calibration object, the algorithm for evaluating the orientation data and the combination of the LTS profiles are described. Finally, experiments with real extrusion data are presented to validate the results and compare three variations of data evaluation. Two use the calculated orientation, but have different tracking approaches and one without any orientation necessary.
KW - Extrusion
KW - Inline Measurement
KW - Laser Triangulation Sensor
KW - Orientation
KW - Rubber
KW - Stereo Camera System
UR - http://www.scopus.com/inward/record.url?scp=85197360103&partnerID=8YFLogxK
U2 - 10.5194/isprs-archives-XLVIII-2-2024-1-2024
DO - 10.5194/isprs-archives-XLVIII-2-2024-1-2024
M3 - Conference article
AN - SCOPUS:85197360103
VL - 48
SP - 1
EP - 7
JO - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives
JF - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives
SN - 1682-1750
IS - 2
T2 - ISPRS TC II Mid-term Symposium on the Role of Photogrammetry for a Sustainable World
Y2 - 11 June 2024 through 14 June 2024
ER -