Post-Newtonian corrections to Schrödinger equations in gravitational fields

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

Externe Organisationen

  • Universität Bremen
  • Zentrum für angewandte Raumfahrt­technologie und Mikro­gravitation (ZARM)
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Aufsatznummer095016
FachzeitschriftClassical and Quantum Gravity
Jahrgang36
Ausgabenummer9
Frühes Online-Datum12 Apr. 2019
PublikationsstatusVeröffentlicht - 9 Mai 2019

Abstract

In this paper we extend the WKB-like 'non-relativistic' expansion of the minimally coupled Klein-Gordon equation after (Kiefer and Singh 1991 Phys. Rev. D 44 1067-76; Lammerzahl 1995 Phys. Lett. A 203 12-7; Giulini and Großardt 2012 Class. Quantum Grav. 29 215010) to arbitrary order in c -1, leading to Schrödinger equations describing a quantum particle in a general gravitational field, and compare the results with canonical quantisation of a free particle in curved spacetime, following (Wajima et al 1997 Phys. Rev. D 55 1964-70). Furthermore, using a more operator-algebraic approach, the Klein-Gordon equation and the canonical quantisation method are shown to lead to the same results for some special terms in the Hamiltonian describing a single particle in a general stationary spacetime, without any 'non-relativistic' expansion.

ASJC Scopus Sachgebiete

Zitieren

Post-Newtonian corrections to Schrödinger equations in gravitational fields. / Schwartz, Philip K.; Giulini, Domenico.
in: Classical and Quantum Gravity, Jahrgang 36, Nr. 9, 095016, 09.05.2019.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Schwartz PK, Giulini D. Post-Newtonian corrections to Schrödinger equations in gravitational fields. Classical and Quantum Gravity. 2019 Mai 9;36(9):095016. Epub 2019 Apr 12. doi: 10.48550/arXiv.1812.05181, 10.1088/1361-6382/ab0fbd, 10.15488/5103, 10.1088/1361-6382/ab5633
Download
@article{72dd150642a5419fbb69624e583b1d25,
title = "Post-Newtonian corrections to Schr{\"o}dinger equations in gravitational fields",
abstract = "In this paper we extend the WKB-like 'non-relativistic' expansion of the minimally coupled Klein-Gordon equation after (Kiefer and Singh 1991 Phys. Rev. D 44 1067-76; Lammerzahl 1995 Phys. Lett. A 203 12-7; Giulini and Gro{\ss}ardt 2012 Class. Quantum Grav. 29 215010) to arbitrary order in c -1, leading to Schr{\"o}dinger equations describing a quantum particle in a general gravitational field, and compare the results with canonical quantisation of a free particle in curved spacetime, following (Wajima et al 1997 Phys. Rev. D 55 1964-70). Furthermore, using a more operator-algebraic approach, the Klein-Gordon equation and the canonical quantisation method are shown to lead to the same results for some special terms in the Hamiltonian describing a single particle in a general stationary spacetime, without any 'non-relativistic' expansion.",
keywords = "formal WKB expansion, Klein-Gordon equation, non-relativistic expansion, post-Newtonian expansion, quantum matter in gravity",
author = "Schwartz, {Philip K.} and Domenico Giulini",
note = "Funding information: The authors would like to thank two anonymous referees for valuable comments on the manuscript. This work was supported by the Deutsche Forschungsgemeinschaft through the Collaborative Research Centre 1227 (DQ-mat), project B08.",
year = "2019",
month = may,
day = "9",
doi = "10.48550/arXiv.1812.05181",
language = "English",
volume = "36",
journal = "Classical and Quantum Gravity",
issn = "0264-9381",
publisher = "IOP Publishing Ltd.",
number = "9",

}

Download

TY - JOUR

T1 - Post-Newtonian corrections to Schrödinger equations in gravitational fields

AU - Schwartz, Philip K.

AU - Giulini, Domenico

N1 - Funding information: The authors would like to thank two anonymous referees for valuable comments on the manuscript. This work was supported by the Deutsche Forschungsgemeinschaft through the Collaborative Research Centre 1227 (DQ-mat), project B08.

PY - 2019/5/9

Y1 - 2019/5/9

N2 - In this paper we extend the WKB-like 'non-relativistic' expansion of the minimally coupled Klein-Gordon equation after (Kiefer and Singh 1991 Phys. Rev. D 44 1067-76; Lammerzahl 1995 Phys. Lett. A 203 12-7; Giulini and Großardt 2012 Class. Quantum Grav. 29 215010) to arbitrary order in c -1, leading to Schrödinger equations describing a quantum particle in a general gravitational field, and compare the results with canonical quantisation of a free particle in curved spacetime, following (Wajima et al 1997 Phys. Rev. D 55 1964-70). Furthermore, using a more operator-algebraic approach, the Klein-Gordon equation and the canonical quantisation method are shown to lead to the same results for some special terms in the Hamiltonian describing a single particle in a general stationary spacetime, without any 'non-relativistic' expansion.

AB - In this paper we extend the WKB-like 'non-relativistic' expansion of the minimally coupled Klein-Gordon equation after (Kiefer and Singh 1991 Phys. Rev. D 44 1067-76; Lammerzahl 1995 Phys. Lett. A 203 12-7; Giulini and Großardt 2012 Class. Quantum Grav. 29 215010) to arbitrary order in c -1, leading to Schrödinger equations describing a quantum particle in a general gravitational field, and compare the results with canonical quantisation of a free particle in curved spacetime, following (Wajima et al 1997 Phys. Rev. D 55 1964-70). Furthermore, using a more operator-algebraic approach, the Klein-Gordon equation and the canonical quantisation method are shown to lead to the same results for some special terms in the Hamiltonian describing a single particle in a general stationary spacetime, without any 'non-relativistic' expansion.

KW - formal WKB expansion

KW - Klein-Gordon equation

KW - non-relativistic expansion

KW - post-Newtonian expansion

KW - quantum matter in gravity

UR - http://www.scopus.com/inward/record.url?scp=85067365882&partnerID=8YFLogxK

U2 - 10.48550/arXiv.1812.05181

DO - 10.48550/arXiv.1812.05181

M3 - Article

AN - SCOPUS:85067365882

VL - 36

JO - Classical and Quantum Gravity

JF - Classical and Quantum Gravity

SN - 0264-9381

IS - 9

M1 - 095016

ER -

Von denselben Autoren